Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was impro...Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition.展开更多
Software defect feature selection has problems of feature space dimensionality reduction and large search space.This research proposes a defect prediction feature selection framework based on improved shuffled frog le...Software defect feature selection has problems of feature space dimensionality reduction and large search space.This research proposes a defect prediction feature selection framework based on improved shuffled frog leaping algorithm(ISFLA).Using the two-level structure of the framework and the improved hybrid leapfrog algorithm's own advantages,the feature values are sorted,and some features with high correlation are selected to avoid other heuristic algorithms in the defect prediction that are easy to produce local The case where the convergence rate of the optimal or parameter optimization process is relatively slow.The framework improves generalization of predictions of unknown data samples and enhances the ability to search for features related to learning tasks.At the same time,this framework further reduces the dimension of the feature space.After the contrast simulation experiment with other common defect prediction methods,we used the actual test data set to verify the framework for multiple iterations on Internet of Things(IoT)system platform.The experimental results show that the software defect prediction feature selection framework based on ISFLA is very effective in defect prediction of IoT communication software.This framework can save the testing time of IoT communication software,effectively improve the performance of software defect prediction,and ensure the software quality.展开更多
基金supported by the National Nature Science Foundation(61231002,61273266,51075068)the Doctoral Fund of Ministry of Education of China(20110092130004)+1 种基金the Postdoctoral Fund of Ministry of Education of China(2012M520973)the Open Research Foundation of Key Laboratory(B) of Underwater Acoustic Signal Processing of Ministry of Education of Southeast University under Grant(UASP1202)
文摘Due to the drawbacks in Support Vector Machine(SVM)parameter optimization,an Improved Shuffled Frog Leaping Algorithm(Im-SFLA)was proposed,and the learning ability in practical speech emotion recognition was improved.Firstly,we introduced Simulated Annealing(SA),Immune Vaccination(Iv),Gaussian mutation and chaotic disturbance into the basic SFLA,which bManced the search efficiency and population diversity effectively.Secondly,Im-SFLA Was applied to the optimization of SVM parameters,and an Im-SFLA-SVM method Was proposed.Thirdly,the acoustic features of practical speech emotion,such aS ridgetiness,were analyzed.The pitch frequency,short-term energy,formant frequency and chaotic characteristics were analyzed corresponding to different emotion categories,and we constructed a 144-dimensional emotion feature vector for recognition and reduced to 4-dimension by adopting Linear Discriminant Analysis(LDA) Finally,the Im-SFLA-SVM method Was tested on the practical speech emotion database,and the recognition results were compared with Shuffled Frog Leaping Algorithm optimization-SVM(SFLA-SVM)method,Particle Swarm Optimization algorithm optimization-SVM(PSo-SVM) method,basic SVM,Gaussian Mixture Model(GMM)method and Back Propagation(BP)neural network method.The experimentM resuits showed that the average recognition rate of Im-SFLA-SVM method was 77.8%,which had improved 1.7%,2.7%,3.4%,4.7%and 7.8%respectively,compared with the other methods.The recognition of fidgetiness was significantly improve,thus verifying that Im-SFLA was an effective SVM parameter selection method,and the Im-SFLA-SVM method may significantly improve the practical speech emotion recognition.
基金This work was supported by Liaoning Natural Fund Guidance Plan Project(No.20180550021)Dalian Science and Technology Star Project(No.2017RQ021)2019 Qingdao Binhai University-level Science and Technology Plan Research Project(No.2019KY09).
文摘Software defect feature selection has problems of feature space dimensionality reduction and large search space.This research proposes a defect prediction feature selection framework based on improved shuffled frog leaping algorithm(ISFLA).Using the two-level structure of the framework and the improved hybrid leapfrog algorithm's own advantages,the feature values are sorted,and some features with high correlation are selected to avoid other heuristic algorithms in the defect prediction that are easy to produce local The case where the convergence rate of the optimal or parameter optimization process is relatively slow.The framework improves generalization of predictions of unknown data samples and enhances the ability to search for features related to learning tasks.At the same time,this framework further reduces the dimension of the feature space.After the contrast simulation experiment with other common defect prediction methods,we used the actual test data set to verify the framework for multiple iterations on Internet of Things(IoT)system platform.The experimental results show that the software defect prediction feature selection framework based on ISFLA is very effective in defect prediction of IoT communication software.This framework can save the testing time of IoT communication software,effectively improve the performance of software defect prediction,and ensure the software quality.