As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weigh...As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.展开更多
This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mut...This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.展开更多
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it...Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.展开更多
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o...This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.展开更多
离散频率编码波形是一类常用的多输入多输出雷达波形,加入线性调频能够改善其自相关性能。将基于遗传算法和模拟退火的混合算法用于离散频率编码线性调频(discrete frequency coding waveform-linear frequency modulation,DFCW-LFM)波...离散频率编码波形是一类常用的多输入多输出雷达波形,加入线性调频能够改善其自相关性能。将基于遗传算法和模拟退火的混合算法用于离散频率编码线性调频(discrete frequency coding waveform-linear frequency modulation,DFCW-LFM)波形的优化设计,仿真结果表明,用该优化算法得到的信号其相关性能要优于现有方法。另外,提出了一种改进的DFCW-LFM波形设计方法。该方法在DFCW-LFM波形的基础上,对频率编码子脉冲同时进行相位编码,构成DFCW-LFM和相位编码的混合波形,并采用混合算法对其进行优化设计。仿真结果表明,和已有的DFCW-LFM波形相比,所设计混合波形的相关性能得到了进一步改善。展开更多
The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based...The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based on support vector regression( SVR) which was optimized by an optimization algorithm combining simulated annealing algorithm and genetic algorithm( SAGA-SVR). To verify the accuracy of the model,the carbon fiber protofilament production test data were analyzed and compared with BP neural network( BPNN). The results show that SAGA-SVR can predict the performance parameters of the carbon fiber protofilament accurately.展开更多
Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly s...Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.展开更多
基金Project (Nos. 2006BAK04A02-02 and 2006BAK02B02-08) sup-ported by the National Key Technology R&D Program, China
文摘As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.
基金Supported by the Climbing PrOgram-National Key Project for Fundamental Research in China, Grant NSC92097
文摘This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.
基金Supported by School of Engineering, Napier University, United Kingdom, and partially supported by the National Natural Science Foundation of China (No.60273093).
文摘Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool.
基金Project supported by the National Natural Science Foundation of China (Grant No.50375023)
文摘This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.
文摘离散频率编码波形是一类常用的多输入多输出雷达波形,加入线性调频能够改善其自相关性能。将基于遗传算法和模拟退火的混合算法用于离散频率编码线性调频(discrete frequency coding waveform-linear frequency modulation,DFCW-LFM)波形的优化设计,仿真结果表明,用该优化算法得到的信号其相关性能要优于现有方法。另外,提出了一种改进的DFCW-LFM波形设计方法。该方法在DFCW-LFM波形的基础上,对频率编码子脉冲同时进行相位编码,构成DFCW-LFM和相位编码的混合波形,并采用混合算法对其进行优化设计。仿真结果表明,和已有的DFCW-LFM波形相比,所设计混合波形的相关性能得到了进一步改善。
基金the Key Project of National Natural Science Foundation of China(No.61134009)Program for Changjiang Scholars and Innovation Research Team in University from the Ministry of Education,China(No.IRT1220)+1 种基金Specialized Research Fund for Shanghai Leading Talents,Project of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.2232012A3-04)
文摘The existing optimized performance prediction of carbon fiber protofilament process model is still unable to meet the production needs. A way of performance prediction on carbon fiber protofilament was presented based on support vector regression( SVR) which was optimized by an optimization algorithm combining simulated annealing algorithm and genetic algorithm( SAGA-SVR). To verify the accuracy of the model,the carbon fiber protofilament production test data were analyzed and compared with BP neural network( BPNN). The results show that SAGA-SVR can predict the performance parameters of the carbon fiber protofilament accurately.
基金the National Natural Science Foundation of China(Nos.61004088 and 61374160)
文摘Unit commitment(UC), as a typical optimization problem in electric power system, faces new challenges as energy saving and emission reduction get more and more important in the way to a more environmentally friendly society. To meet these challenges, we propose a UC model considering energy saving and emission reduction. By using real-number coding method, swap-window and hill-climbing operators, we present an improved real-coded genetic algorithm(IRGA) for UC. Compared with other algorithms approach to the proposed UC problem, the IRGA solution shows an improvement in effectiveness and computational time.