With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation ...With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.展开更多
The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear p...The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.展开更多
In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0...In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.展开更多
基金National Key Research and Development of China(No.2019YFB1600700)Sichuan Science and Technology Planning Project(No.2021YFSY0003)。
文摘With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.
基金supported by the Natural Science Foundation of Jiangsu Province(BK2012510,BK20140074)the National Postdoctoral Foundation of China(20090461424)
文摘The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.
基金supported by the National Nature Science Foundation of China(61372128)the Scientific&Technological Support Project(Industry)of Jiangsu Province(BE2011195)
文摘In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.