[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM...[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.展开更多
[Objective] Saline-alkali wasteland is a kind of land use type that formed by soil salinization and secondary salinization. To study the causes of spatial distri- bution of saline-alkali wasteland could be used as ref...[Objective] Saline-alkali wasteland is a kind of land use type that formed by soil salinization and secondary salinization. To study the causes of spatial distri- bution of saline-alkali wasteland could be used as reference for the amelioration and is significant for developing the reserved land with great potential. [Method] The re- search set a total of 1 729 sampling points in the study area of 34 433 hm2. Spa- tial analyses were used to find out the causes of saline-alkali wasteland in Datong basin from four factors: topography, geology, hydrology and soil. DEM and land use data were used to calculate distribution index of topography, and distribution of the total salinity (TS) and pH was analyzed by means of IDW interpolation. [Result] The results showed that saline-alkali wasteland was distributed on flat and low-lying ter- rains with poor drainage, which led to salt accumulation. 87% of saline-alkali wasteland was distributed on Quaternary Holocene alluvium whose performance of soil hydraulic conductivity was poor. TS value distribution was that in midstream re- gion was the highest, less in upstream region and the least in downstream region along the rivers, and TS value decreased when distance between saline-alkali wasteland and rivers increased. The major soil types in Datong basin were fluvo- aquic soil and saline soil. Both of the two soil types were of high TS value and pH value, and heavily salinized and strongly alkalized. [Conclusion] High groundwater table and the existence of two salt accumulation centers are the two causes of saline-alkali wasteland in Datong basin. The key to ameliorate saline-alkali waste- land is to descend the groundwater table and lessen salt accumulation.展开更多
Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil ...Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.展开更多
Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2...Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.展开更多
Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being bu...Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being but also a strategic priority for maintaining self-sufficiency.To enhance food security,two key approaches are increasing yields from the existing agricultural lands and improving the productivity of low-and medium-yield farmland.One of China’s major underutilized resources is its extensive saline-alkali lands,which,despite historically low productivity due to poor soil conditions and scarce freshwater resources,hold immense potential for boosting grain output.Recognizing this,the Chinese Academy of Sciences,in collaboration with the Chinese Ministry of Science and Technology(MOST),initiated the“Bohai Granary Scientific and Technological Demonstration Project”(Bohai Granary Project for short)in partnership with three provinces and one municipality-Hebei,Shandong,Liaoning,and Tianjin.This project represents a landmark effort to rehabilitate saline-alkali lands and transform them into highly productive grain-producing regions,thereby contributing significantly to China’s food security strategy.In this article,the author revisits the key milestones,technological breakthroughs,and outlook on the future potential of this project.展开更多
基金Supported by Key Research and Development Program of Hebei Province(20322911D,21322903D)Innovation Ability Promotion Program of Hebei Province(20562903D)+1 种基金Technical Innovation Guidance Program of Hebei Province(20822904D)Science and Technology Research and Development Program of Qinhuangdao City(202201B028).
文摘[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.
文摘[Objective] Saline-alkali wasteland is a kind of land use type that formed by soil salinization and secondary salinization. To study the causes of spatial distri- bution of saline-alkali wasteland could be used as reference for the amelioration and is significant for developing the reserved land with great potential. [Method] The re- search set a total of 1 729 sampling points in the study area of 34 433 hm2. Spa- tial analyses were used to find out the causes of saline-alkali wasteland in Datong basin from four factors: topography, geology, hydrology and soil. DEM and land use data were used to calculate distribution index of topography, and distribution of the total salinity (TS) and pH was analyzed by means of IDW interpolation. [Result] The results showed that saline-alkali wasteland was distributed on flat and low-lying ter- rains with poor drainage, which led to salt accumulation. 87% of saline-alkali wasteland was distributed on Quaternary Holocene alluvium whose performance of soil hydraulic conductivity was poor. TS value distribution was that in midstream re- gion was the highest, less in upstream region and the least in downstream region along the rivers, and TS value decreased when distance between saline-alkali wasteland and rivers increased. The major soil types in Datong basin were fluvo- aquic soil and saline soil. Both of the two soil types were of high TS value and pH value, and heavily salinized and strongly alkalized. [Conclusion] High groundwater table and the existence of two salt accumulation centers are the two causes of saline-alkali wasteland in Datong basin. The key to ameliorate saline-alkali waste- land is to descend the groundwater table and lessen salt accumulation.
基金Supported by the Key Research and Development Program for Industrial Keytechnologies of Shandong Province(2016CYJS05A01-2)the Key Research and Development Program for Public Welfare of Shandong Province(2018GNC111001)the Special Fund for the Construction of Oversea Taishan Scholars
文摘Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.
基金Supported by National Science and Technology Support Program(2014BAD06B05)
文摘Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.
文摘Agriculture forms the backbone of a nation,and food security is essential for social stability and sustainable economic growth.In China,ensuring adequate food production is not only critical for national well-being but also a strategic priority for maintaining self-sufficiency.To enhance food security,two key approaches are increasing yields from the existing agricultural lands and improving the productivity of low-and medium-yield farmland.One of China’s major underutilized resources is its extensive saline-alkali lands,which,despite historically low productivity due to poor soil conditions and scarce freshwater resources,hold immense potential for boosting grain output.Recognizing this,the Chinese Academy of Sciences,in collaboration with the Chinese Ministry of Science and Technology(MOST),initiated the“Bohai Granary Scientific and Technological Demonstration Project”(Bohai Granary Project for short)in partnership with three provinces and one municipality-Hebei,Shandong,Liaoning,and Tianjin.This project represents a landmark effort to rehabilitate saline-alkali lands and transform them into highly productive grain-producing regions,thereby contributing significantly to China’s food security strategy.In this article,the author revisits the key milestones,technological breakthroughs,and outlook on the future potential of this project.