We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1...We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of...Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of the existence of positive solutions for impulsive neutral differential equations are obtained.展开更多
The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier c...The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier curves. For such type of equations, suf- ficient conditions are found under which the solutions are continuously dependent on the perturbations with respect to the initial conditions and barrier curves. The results are applied to a mathematical model of population dynamics.展开更多
In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for ...In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for oscillation are presented.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed poi...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given...In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.展开更多
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banac...This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].展开更多
Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong conve...Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong convergence can preserve the mean square stability with the sufficiently small stepsize. Weak variants and their mean square stability are also considered. Several numerical experiments are given for illustration and show that the fully implicit methods are superior to those of the explicit methods in terms of mean-square stabilities for relatively large stepsizes especially.展开更多
In this paper we investigate a class of impulsive differential equations with Dirichlet boundary conditions. Firstly, we define new inner product of <img src="Edit_890fce38-e82b-4f36-be40-9d05e8119b88.png"...In this paper we investigate a class of impulsive differential equations with Dirichlet boundary conditions. Firstly, we define new inner product of <img src="Edit_890fce38-e82b-4f36-be40-9d05e8119b88.png" width="40" height="17" alt="" /> and prove that the norm which is deduced by the inner product is equivalent to the usual norm. Secondly, we construct the lower and upper solutions of (1.1). Thirdly, we obtain the existence of a positive solution, a negative solution and a sign-changing solution by using critical point theory and variational methods. Finally, an example is presented to illustrate the application of our main result.展开更多
Under loose conditions, the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive half real axis i...Under loose conditions, the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive half real axis in Banach spaces. By the use of recurrence method, Tonelii sequence and the locally convex topology, the new existence theorems are achieved, which improve the related results obtained by Guo Da-jun.展开更多
Sufficient conditions are investigated for the global stability of the solu tions to models based on nonlinear impulsive differential equations with "supremum" and variable impulsive perturbations. The main tools ar...Sufficient conditions are investigated for the global stability of the solu tions to models based on nonlinear impulsive differential equations with "supremum" and variable impulsive perturbations. The main tools are the Lyapunov functions and Razu mikhin technique. Two illustrative examples are given to demonstrate the effectiveness of the obtained results.展开更多
The existence of periodic solutions for a class of impulsive differential equations of mixed type is studied by constructing periodic sequence solutions of difference equations.
In this article,a new algorithm is presented to solve the nonlinear impulsive differential equations.In the first time,this article combines the reproducing kernel method with the least squares method to solve the sec...In this article,a new algorithm is presented to solve the nonlinear impulsive differential equations.In the first time,this article combines the reproducing kernel method with the least squares method to solve the second-order nonlinear impulsive differential equations.Then,the uniform convergence of the numerical solution is proved,and the time consuming Schmidt orthogonalization process is avoided.The algorithm is employed successfully on some numerical examples.展开更多
By an established comparison result and using the upper and lower solutions,one sufficient condition of existence of minimal and maximal solutions to initial value problem for second order impulsive integro-differenti...By an established comparison result and using the upper and lower solutions,one sufficient condition of existence of minimal and maximal solutions to initial value problem for second order impulsive integro-differential equation in Banach spaces is obtained and the related results are essentially improved.At the same time, another sufficient condition of existence of minimal and maximal solutions based on the Kuratowski measure of noncompactness is given.展开更多
Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] ...Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] × [0, ∞) → [0, ∞), Ii,Li : [0, ∞) → R, (i = 1, 2,…, k) are continuous functions. We prove the existence of eigenvalues for the problem under a weaker condition, moreover we do not require the monotonicity of the impulsive functions.展开更多
The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence th...The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence theorems of extremal solutions are obtained, which extend the related results for this class of equations on a finite interval with a finite. number of moments of impulse effect. The results are demonstrated by means of an example of an infinite systems for impulsive integral equations.展开更多
By employing the inequality of [8] and a positive continuous function g(t), t[t0, +∞), oscillation criteria for the second-order half-linear impulsive differential equ-ations with damping are established. Our res...By employing the inequality of [8] and a positive continuous function g(t), t[t0, +∞), oscillation criteria for the second-order half-linear impulsive differential equ-ations with damping are established. Our results generalize and improve some known ones.展开更多
In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower...In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.展开更多
基金Supported by the National Natural Science Foundation of China(10371006)
文摘We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘Aim To investigate the existence of positive solutions for impulsive neutral differential equations. Methods The Banach contraction principle was used to establish our results. Results and Conclusion The results of the existence of positive solutions for impulsive neutral differential equations are obtained.
文摘The basic objects of investigation in this article are nonlinear impulsive dif- ferential equations. The impulsive moments coincide with the moments of meeting of the integral curve and some of the so-called barrier curves. For such type of equations, suf- ficient conditions are found under which the solutions are continuously dependent on the perturbations with respect to the initial conditions and barrier curves. The results are applied to a mathematical model of population dynamics.
文摘In this paper, oscillatory properties of all solutions for neutral type impulsive hyperbolic equations with several delays under the Robin boundary condition are investigated and several new sufficient conditions for oscillation are presented.
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金supported by the National Natural Science Foundation of China (No. 10871063)Scientific Research Fund of Hunan Provincial Education Department (No. 07A038)
文摘In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.
基金The NSF(10971221)of ChinaThe Youth Research Found(2009QS07)of China University of Mining and Technology,Beijing
文摘This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].
基金National Natural Science Foundations of China(Nos.11561028,11101101,11461032,11401267)Natural Science Foundations of Jiangxi Province,China(Nos.20151BAB201013,20151BAB201010,20151BAB201015)
文摘Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong convergence can preserve the mean square stability with the sufficiently small stepsize. Weak variants and their mean square stability are also considered. Several numerical experiments are given for illustration and show that the fully implicit methods are superior to those of the explicit methods in terms of mean-square stabilities for relatively large stepsizes especially.
文摘In this paper we investigate a class of impulsive differential equations with Dirichlet boundary conditions. Firstly, we define new inner product of <img src="Edit_890fce38-e82b-4f36-be40-9d05e8119b88.png" width="40" height="17" alt="" /> and prove that the norm which is deduced by the inner product is equivalent to the usual norm. Secondly, we construct the lower and upper solutions of (1.1). Thirdly, we obtain the existence of a positive solution, a negative solution and a sign-changing solution by using critical point theory and variational methods. Finally, an example is presented to illustrate the application of our main result.
基金Project supported by the National Natural Science Foundation of China(Nos. 10572057 and 10251001)the Science Foundation of Nanjing University of Aeronautics and Austronautics
文摘Under loose conditions, the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive half real axis in Banach spaces. By the use of recurrence method, Tonelii sequence and the locally convex topology, the new existence theorems are achieved, which improve the related results obtained by Guo Da-jun.
文摘Sufficient conditions are investigated for the global stability of the solu tions to models based on nonlinear impulsive differential equations with "supremum" and variable impulsive perturbations. The main tools are the Lyapunov functions and Razu mikhin technique. Two illustrative examples are given to demonstrate the effectiveness of the obtained results.
基金theAppliedScienceFoundationofYunnan China (97A10 16Q)
文摘The existence of periodic solutions for a class of impulsive differential equations of mixed type is studied by constructing periodic sequence solutions of difference equations.
基金This work is supported by a Young Innovative Talents Program in Universities and Colleges of Guangdong Province(2018KQNCX338)two Scientific Research-Innovation Team Projects at Zhuhai Campus,Beijing Institute of Technology(XK-2018-15,XK-2019-10).
文摘In this article,a new algorithm is presented to solve the nonlinear impulsive differential equations.In the first time,this article combines the reproducing kernel method with the least squares method to solve the second-order nonlinear impulsive differential equations.Then,the uniform convergence of the numerical solution is proved,and the time consuming Schmidt orthogonalization process is avoided.The algorithm is employed successfully on some numerical examples.
文摘By an established comparison result and using the upper and lower solutions,one sufficient condition of existence of minimal and maximal solutions to initial value problem for second order impulsive integro-differential equation in Banach spaces is obtained and the related results are essentially improved.At the same time, another sufficient condition of existence of minimal and maximal solutions based on the Kuratowski measure of noncompactness is given.
基金Supported by the NNSF of China(10371006) Supported by the Youth Teacher Science Research Foundation of Central University of Nationalities(CUN08A)
文摘Consider the following equations:{λx"(t)+f(t,x(t))=0,t≠tiΔλx(ti)=Ii(x(ti)),i=1,2,…,kΔλx(ti)=Li(x(ti)),i=1,2,…,kx'(0)=0=x(1)-αx(η).Where 0 〈 η〈 1,0 〈 α 〈 1, and f : [0,1] × [0, ∞) → [0, ∞), Ii,Li : [0, ∞) → R, (i = 1, 2,…, k) are continuous functions. We prove the existence of eigenvalues for the problem under a weaker condition, moreover we do not require the monotonicity of the impulsive functions.
文摘The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence theorems of extremal solutions are obtained, which extend the related results for this class of equations on a finite interval with a finite. number of moments of impulse effect. The results are demonstrated by means of an example of an infinite systems for impulsive integral equations.
基金Foundation item: Supported by the Natural Science Foundation of Guangdong Province(011471)
文摘By employing the inequality of [8] and a positive continuous function g(t), t[t0, +∞), oscillation criteria for the second-order half-linear impulsive differential equ-ations with damping are established. Our results generalize and improve some known ones.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)Central South University Graduate Innovation Project,China(No.2014zzts136)
文摘In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.