Fusobacterium nucleatum is an anaerobic, commensal, gram-negative oral bacterium that is carcinogenic and causes a wide range of human diseases. The present study focused on the analysis of the hypothetical protein, H...Fusobacterium nucleatum is an anaerobic, commensal, gram-negative oral bacterium that is carcinogenic and causes a wide range of human diseases. The present study focused on the analysis of the hypothetical protein, HMPREF3221_01179, derived from F. nucleatum strain MJR7757B, employing various computational methods to anticipate both its structure and functional characteristics. NCBI conserved domain analysis, NCBI BLASTp and MEGA Phylogenetic tree study characterize the target protein as an outer membrane efflux protein (ToIC family) which facilitate the bacterial transmembrane transport. With a molecular weight of 52120.02 Da, an isoelectric point (pI) of 8.33, and an instability index of 29.47, the protein is anticipated to exhibit good solubility in the extracellular space and crucial stability for pharmaceutical applications. The protein’s structure meets quality standards during the construction and refinement of its 3D model. The efflux inhibitor Arginine beta-naphthylamide exhibits a significant binding affinity (-7.1 kcal/mol) to the binding site of the target protein. The in-silico analysis improves the understanding of the protein and facilitates future investigations into therapeutic medication.展开更多
The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was establishe...The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.展开更多
BACKGROUND Colonization with Helicobacter pylori(H.pylori)has a strong correlation with gastric cancer,and the virulence factor CagA is implicated in carcinogenesis.Studies have been conducted using medicinal plants w...BACKGROUND Colonization with Helicobacter pylori(H.pylori)has a strong correlation with gastric cancer,and the virulence factor CagA is implicated in carcinogenesis.Studies have been conducted using medicinal plants with the aim of eliminating the pathogen;however,the possibility of blocking H.pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed.This type of study is expensive and time-consuming,requiring in vitro and/or in vivo tests,which can be solved using bioinformatics.Therefore,prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein.AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H.pylori.METHODS In this in silico study,the structures of the phenolic compounds(ligands)kaempferol,myricetin,quercetin,ponciretin(flavonoids),and chlorogenic acid(phenolic acid)were selected from the PubChem database.These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H.pylori infection.The three-dimensional structure model of the CagA oncoprotein of H.pylori(receptor)was obtained through molecular modeling using computational tools from the I-Tasser platform,employing the threading methodology.The primary sequence of CagA was sourced from GenBank(BAK52797.1).A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands,utilizing the GRaSP online platform.Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4(ADT)software,and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software.Two sets of simulations were performed:One involving the central region of CagA with phenolic compounds,and another involving the carboxy-terminus region of CagA with phenolic compounds.The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software.RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality(C-score=0.09)and was validated using parameters from the MolProbity platform.The GRaSP online platform identified 24 residues(phenylalanine and leucine)as potential binding sites on the CagA oncoprotein.Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein.No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds;however,all phenolic compounds interacted with the central region of the oncoprotein.Phenolic compounds and CagA exhibited significant affinity energy(-7.9 to-9.1 kcal/mol):CagA/kaempferol formed 28 chemical bonds,CagA/myricetin formed 18 chemical bonds,CagA/quercetin formed 16 chemical bonds,CagA/ponciretin formed 13 chemical bonds,and CagA/chlorogenic acid formed 17 chemical bonds.Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif,all of them bound to residues,mostly positively or negatively charged,located near this region.CONCLUSION In silico,the tested phenolic compounds formed stable complexes with CagA.Therefore,they could be tested in vitro and/or in vivo to validate the findings,and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.展开更多
Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our ...Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our work in 2019 concerning the ecotoxicological effects of such formulations on corals (Seriatopora hystrix), we here provide some new information about the biodegradability and the ecotoxicological effects of these products on marine zoo- and phytoplankton. Therefore, we choose to realize in silico and in vitro studies of the biodegradability of several solar products but also to evaluate the ecotoxicological effects of these products on one phytoplankton, i.e. Phaeodactylum tricornutum, and one zooplankton, i.e. Acartia tonsa, of a great importance for sea species survival (notably as sources of food). Materials and methods: Two different approaches were used to study the biodegradability of the tested products: One in silico method and an in vitro one. 2 solar products were involved in the in silico study which consisted in the determination of the degradation factor (DF) of each ingredient of the tested formulas in order to finally obtain their estimated biodegradability percentage. Already available data concerning each ingredient coupled to a computer model developed with one of our partners were used to achieve this study. The in vitro study involved 8 formulas containing UV-filters and was led by following the OECD 301 F guidelines. Ecotoxicological studies of 7 of the formulas containing UV-filters were for their part realized by following the ISO 10253 guidelines for the experiments led with Phaeodactylum tricornutum, and the ISO 14669 guidelines for the experiments led with Acartia tonsa. In these studies, the effect of each tested product on crustaceans’ mortality and algal growth inhibition was assessed. Results: The in silico study predicted that formulas containing chemical UV-filters display a high biodegradability (superior to the threshold value of 60% given by the OECD 301 F guidelines). In the in vitro part of our work, the 8 tested formulas showed a biodegradability slightly inferior to the one predicted in the in silico experiments. Therefore, in order to evaluate if these calculated biodegradability value could have significant harmful effects on zoo- or phytoplankton, we studied the effect of our products regarding the growth inhibition on Phaeodactylum tricornutum and the mortality on Acartia tonsa. In this last part of the study, all the tested products were classified as “non ecotoxic” following an internal classification based on Part 4 entitled “Environmental Hazards” of Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 9<sup>th</sup> edition (2021). Conclusions: These results are notably in line with those published by our teams in 2019 on the effects of solar cosmetic products on corals and seem to confirm that formulas containing mineral and chemical UV-filters can be daily used without displaying significant noxious effects on marine fauna and flora. .展开更多
Although the GABAA receptor(GABAAR)has been proposed as the main action site for sevoflurane,isoflurane,halothane,enflurane,propofol,and benzodiazepines(BZDs),binding of these anesthetics with high-resolution structur...Although the GABAA receptor(GABAAR)has been proposed as the main action site for sevoflurane,isoflurane,halothane,enflurane,propofol,and benzodiazepines(BZDs),binding of these anesthetics with high-resolution structures of the GABAAR have been rarely examined by comparative docking analyses.Moreover,various combinations of ligands on more GABAARs with various subtypes need to be analyzed to understand the elaborate action mechanism of GABAARs better because some GABAA ligands showed specificity toward the distinct subtypes of the GABAAR.Methods:We performed in silico docking analysis to compare the binding modes of sevoflurane,isoflurane,halothane,enflurane,propofol,and BZDs to the GABAAR based on one of the most recently provided 3D structures.We performed the docking analysis and the affinity-based ranking of the binding sites.Results:Our docking studies revealed that isoflurane,halothane,and enflurane docked in an extracellular domain(ECD)on GABAARs,in contrast to sevoflurane.Conclusion:Our results supported a multi-site mechanism for the allosteric modulation of propofol.Propofol was bound to the pore or favored various subsites in the transmembrane domain(TMD).Our result confirmed that different chemically related BZD ligands interact via distinct binding modes rather than by using a common binding mode,as previously suggested.展开更多
Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant ...Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components.展开更多
Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dyn...Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.展开更多
BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary an...BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary and multibacillary,with different clinical and immunological manifestations.Unlike what occurs in the multibacillary form,the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive,allowing the existence of infected individuals without treatment,which contributes to the spread of the pathogen in the population.To mitigate this contamination,more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.AIM To predict the three-dimensional structure models of M.leprae antigens with serodiagnostic potential for leprosy.METHODS In this in silico study,satisfactory templates were selected in the Protein Data Bank(PDB)using Basic Local Alignment Search Tool to predict the structural templates of ML2038,ML0286,ML0050,and 85B antigens by comparative modeling.The templates were selected according to general criteria such as sequence identity,coverage,X-ray resolution,Global Model Quality Estimate value and phylogenetic relationship;Clustal X 2.1 software was used in this analysis.Molecular modeling was completed using the software Modeller 9v13.Visualization of the models was made using ViewerLite 4.2 and PyMol software,and analysis of the quality of the predicted models was performed using the QMEAN score and Z-score.Finally,the three-dimensional moels were validated using the MolProbity and Verify 3D platforms.RESULTS The three-dimensional structure models of ML2038,ML0286,ML0050,and 85B antigens of M.leprae were predicted using the templates PDB:3UOI(90.51%identity),PDB:3EKL(87.46%identity),PDB:3FAV(40.00%identity),and PDB:1F0N(85.21%identity),respectively.The QMEAN and Z-score values indicated the good quality of the structure models.These data refer to the monomeric units of antigens,since some of these antigens have quaternary structure.The validation of the models was performed with the final three-dimensional structure-monomer(ML0050 and 85B antigens)and quaternary structures(ML2038 and ML0286).The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot,indicating correct positioning of the side chain and absence of steric impediment.The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.CONCLUSION The polarized immune response against M.leprae creates a problem in leprosy detection.The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests,for this it is important to know the three-dimensional structure of the antigens,which can be predicted with bioinformatics tools.展开更多
根据日本晴cab4基因序列(GenBank:AK104499.1)设计引物,用RT-PCR的方法从籼稻9311中克隆了叶绿素a/b结合蛋白基因的全长cDNA,命名为cab-9311(cab gene from 9311)。insilico分析表明:cab-9311与cab4基因同源性为99%,编码的蛋白含有244...根据日本晴cab4基因序列(GenBank:AK104499.1)设计引物,用RT-PCR的方法从籼稻9311中克隆了叶绿素a/b结合蛋白基因的全长cDNA,命名为cab-9311(cab gene from 9311)。insilico分析表明:cab-9311与cab4基因同源性为99%,编码的蛋白含有244个氨基酸,与cab4基因编码的蛋白同源性为98%。蛋白分子质量为26.9kD,理论等电点为6.52。第54位~第216位氨基酸是一个典型的叶绿素a/b结合蛋白功能域(chlorophyll a/bbinding domain)。跨膜分析和蛋白质三级预测显示,该蛋白在C端有一个典型的跨膜区。亚细胞定位分析表明该蛋白定位于叶绿体,是一个叶绿体内囊体膜上的锚定蛋白。展开更多
Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study lever...Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.展开更多
文摘Fusobacterium nucleatum is an anaerobic, commensal, gram-negative oral bacterium that is carcinogenic and causes a wide range of human diseases. The present study focused on the analysis of the hypothetical protein, HMPREF3221_01179, derived from F. nucleatum strain MJR7757B, employing various computational methods to anticipate both its structure and functional characteristics. NCBI conserved domain analysis, NCBI BLASTp and MEGA Phylogenetic tree study characterize the target protein as an outer membrane efflux protein (ToIC family) which facilitate the bacterial transmembrane transport. With a molecular weight of 52120.02 Da, an isoelectric point (pI) of 8.33, and an instability index of 29.47, the protein is anticipated to exhibit good solubility in the extracellular space and crucial stability for pharmaceutical applications. The protein’s structure meets quality standards during the construction and refinement of its 3D model. The efflux inhibitor Arginine beta-naphthylamide exhibits a significant binding affinity (-7.1 kcal/mol) to the binding site of the target protein. The in-silico analysis improves the understanding of the protein and facilitates future investigations into therapeutic medication.
文摘The synthesis of new 4-imino-4H-chromeno[2,3-d]pyrimidin-3(5H)-amine in four steps including one step under microwave dielectric heating is reported. The structural identity of the synthesized compounds was established according to their spectroscopic analysis, such as FT-IR, NMR and mass spectroscopy. These new compounds were tested for their antiproliferative activities on seven representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3 and MCF7) and also on fibroblasts. Among them, only the compounds 6c showed micromolar cytotoxic activity on tumor cell lines (1.8 50 50 > 25 μM). Finally, in silico ADMET studies ware performed to investigate the possibility of using of the identified compound 6c as potential anti-tumor compound.
文摘BACKGROUND Colonization with Helicobacter pylori(H.pylori)has a strong correlation with gastric cancer,and the virulence factor CagA is implicated in carcinogenesis.Studies have been conducted using medicinal plants with the aim of eliminating the pathogen;however,the possibility of blocking H.pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed.This type of study is expensive and time-consuming,requiring in vitro and/or in vivo tests,which can be solved using bioinformatics.Therefore,prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein.AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H.pylori.METHODS In this in silico study,the structures of the phenolic compounds(ligands)kaempferol,myricetin,quercetin,ponciretin(flavonoids),and chlorogenic acid(phenolic acid)were selected from the PubChem database.These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H.pylori infection.The three-dimensional structure model of the CagA oncoprotein of H.pylori(receptor)was obtained through molecular modeling using computational tools from the I-Tasser platform,employing the threading methodology.The primary sequence of CagA was sourced from GenBank(BAK52797.1).A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands,utilizing the GRaSP online platform.Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4(ADT)software,and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software.Two sets of simulations were performed:One involving the central region of CagA with phenolic compounds,and another involving the carboxy-terminus region of CagA with phenolic compounds.The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software.RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality(C-score=0.09)and was validated using parameters from the MolProbity platform.The GRaSP online platform identified 24 residues(phenylalanine and leucine)as potential binding sites on the CagA oncoprotein.Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein.No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds;however,all phenolic compounds interacted with the central region of the oncoprotein.Phenolic compounds and CagA exhibited significant affinity energy(-7.9 to-9.1 kcal/mol):CagA/kaempferol formed 28 chemical bonds,CagA/myricetin formed 18 chemical bonds,CagA/quercetin formed 16 chemical bonds,CagA/ponciretin formed 13 chemical bonds,and CagA/chlorogenic acid formed 17 chemical bonds.Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif,all of them bound to residues,mostly positively or negatively charged,located near this region.CONCLUSION In silico,the tested phenolic compounds formed stable complexes with CagA.Therefore,they could be tested in vitro and/or in vivo to validate the findings,and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
文摘Background: Cosmetic formulations, and particularly solar products which contain mineral and chemical UV-filters, are often suspected of causing harmful effects on marine fauna and flora. After the publication of our work in 2019 concerning the ecotoxicological effects of such formulations on corals (Seriatopora hystrix), we here provide some new information about the biodegradability and the ecotoxicological effects of these products on marine zoo- and phytoplankton. Therefore, we choose to realize in silico and in vitro studies of the biodegradability of several solar products but also to evaluate the ecotoxicological effects of these products on one phytoplankton, i.e. Phaeodactylum tricornutum, and one zooplankton, i.e. Acartia tonsa, of a great importance for sea species survival (notably as sources of food). Materials and methods: Two different approaches were used to study the biodegradability of the tested products: One in silico method and an in vitro one. 2 solar products were involved in the in silico study which consisted in the determination of the degradation factor (DF) of each ingredient of the tested formulas in order to finally obtain their estimated biodegradability percentage. Already available data concerning each ingredient coupled to a computer model developed with one of our partners were used to achieve this study. The in vitro study involved 8 formulas containing UV-filters and was led by following the OECD 301 F guidelines. Ecotoxicological studies of 7 of the formulas containing UV-filters were for their part realized by following the ISO 10253 guidelines for the experiments led with Phaeodactylum tricornutum, and the ISO 14669 guidelines for the experiments led with Acartia tonsa. In these studies, the effect of each tested product on crustaceans’ mortality and algal growth inhibition was assessed. Results: The in silico study predicted that formulas containing chemical UV-filters display a high biodegradability (superior to the threshold value of 60% given by the OECD 301 F guidelines). In the in vitro part of our work, the 8 tested formulas showed a biodegradability slightly inferior to the one predicted in the in silico experiments. Therefore, in order to evaluate if these calculated biodegradability value could have significant harmful effects on zoo- or phytoplankton, we studied the effect of our products regarding the growth inhibition on Phaeodactylum tricornutum and the mortality on Acartia tonsa. In this last part of the study, all the tested products were classified as “non ecotoxic” following an internal classification based on Part 4 entitled “Environmental Hazards” of Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 9<sup>th</sup> edition (2021). Conclusions: These results are notably in line with those published by our teams in 2019 on the effects of solar cosmetic products on corals and seem to confirm that formulas containing mineral and chemical UV-filters can be daily used without displaying significant noxious effects on marine fauna and flora. .
文摘Although the GABAA receptor(GABAAR)has been proposed as the main action site for sevoflurane,isoflurane,halothane,enflurane,propofol,and benzodiazepines(BZDs),binding of these anesthetics with high-resolution structures of the GABAAR have been rarely examined by comparative docking analyses.Moreover,various combinations of ligands on more GABAARs with various subtypes need to be analyzed to understand the elaborate action mechanism of GABAARs better because some GABAA ligands showed specificity toward the distinct subtypes of the GABAAR.Methods:We performed in silico docking analysis to compare the binding modes of sevoflurane,isoflurane,halothane,enflurane,propofol,and BZDs to the GABAAR based on one of the most recently provided 3D structures.We performed the docking analysis and the affinity-based ranking of the binding sites.Results:Our docking studies revealed that isoflurane,halothane,and enflurane docked in an extracellular domain(ECD)on GABAARs,in contrast to sevoflurane.Conclusion:Our results supported a multi-site mechanism for the allosteric modulation of propofol.Propofol was bound to the pore or favored various subsites in the transmembrane domain(TMD).Our result confirmed that different chemically related BZD ligands interact via distinct binding modes rather than by using a common binding mode,as previously suggested.
基金supported by the Suranaree University of Technology,Thailand,the Thailand Science Research and Innovation(TSRI)the National Science,Research and Innovation Fund,Thailand(NSRF)(90464).
文摘Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components.
文摘Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (M<sup>pro</sup>) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 M<sup>pro</sup>: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.
文摘BACKGROUND Leprosy is a disease caused by Mycobacterium leprae(M.leprae),an intracellular pathogen that has tropism and affects skin and nervous system cells.The disease has two forms of presentation:Paucibacillary and multibacillary,with different clinical and immunological manifestations.Unlike what occurs in the multibacillary form,the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive,allowing the existence of infected individuals without treatment,which contributes to the spread of the pathogen in the population.To mitigate this contamination,more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.AIM To predict the three-dimensional structure models of M.leprae antigens with serodiagnostic potential for leprosy.METHODS In this in silico study,satisfactory templates were selected in the Protein Data Bank(PDB)using Basic Local Alignment Search Tool to predict the structural templates of ML2038,ML0286,ML0050,and 85B antigens by comparative modeling.The templates were selected according to general criteria such as sequence identity,coverage,X-ray resolution,Global Model Quality Estimate value and phylogenetic relationship;Clustal X 2.1 software was used in this analysis.Molecular modeling was completed using the software Modeller 9v13.Visualization of the models was made using ViewerLite 4.2 and PyMol software,and analysis of the quality of the predicted models was performed using the QMEAN score and Z-score.Finally,the three-dimensional moels were validated using the MolProbity and Verify 3D platforms.RESULTS The three-dimensional structure models of ML2038,ML0286,ML0050,and 85B antigens of M.leprae were predicted using the templates PDB:3UOI(90.51%identity),PDB:3EKL(87.46%identity),PDB:3FAV(40.00%identity),and PDB:1F0N(85.21%identity),respectively.The QMEAN and Z-score values indicated the good quality of the structure models.These data refer to the monomeric units of antigens,since some of these antigens have quaternary structure.The validation of the models was performed with the final three-dimensional structure-monomer(ML0050 and 85B antigens)and quaternary structures(ML2038 and ML0286).The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot,indicating correct positioning of the side chain and absence of steric impediment.The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.CONCLUSION The polarized immune response against M.leprae creates a problem in leprosy detection.The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests,for this it is important to know the three-dimensional structure of the antigens,which can be predicted with bioinformatics tools.
文摘Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.