Liposomes are one of the significant classes of antitumor nanomaterials and the most successful nanomedicine drugs in clinical translation. However, it is difficult to accurately reveal liposome delivery modes and dru...Liposomes are one of the significant classes of antitumor nanomaterials and the most successful nanomedicine drugs in clinical translation. However, it is difficult to accurately reveal liposome delivery modes and drug release rates at different p H values to assess the biodistribution and drug delivery pathways in vivo. Here, we established a strategy to integrate Bi-doped carbon quantum dots(CQDs)with liposomes to produce fluorescence visualization and therapeutic effects, namely lipo/Bi-doped CQDs.Lipo/Bi-doped CQDs show good water solubility and physicochemical properties, which can be used for in vitro labeling of colon cancer(CT26) cells and in vivo imaging localization tracking tumors for monitoring. Simultaneously, thanks to the excellent p H sensitivity and ion doping characteristic of Bi-doped CQDs, lipo/Bi-doped CQDs can be used to reveal the drug release rate of liposomes at different p H values and exhibit potential effects in vivo antitumor therapy.展开更多
A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as...A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.展开更多
The emerging graphene quantum dots(GQDs)have gained tremendous attention for their enormous potential in biological applications,owing to their unique and tunable photoluminescence properties,exceptional physicochemic...The emerging graphene quantum dots(GQDs)have gained tremendous attention for their enormous potential in biological applications,owing to their unique and tunable photoluminescence properties,exceptional physicochemical features,high biocompatibility,small sizes and low costs.This mini review aims to update the latest results in rapidly evolving bioimaging research and to provide critical insights into exciting future developments.We firstly provide a brief review of their synthesis and optical properties and then place emphasis on both in vitro and in vivo imaging applications.展开更多
基金funded by Beijing Natural Science Foundation (Nos.L222109, 3222018)Military Health Care Project(No.22BJZ22)+6 种基金Science Foundation of China University of Petroleum (Nos.2462019QNXZ02, 2462019BJRC007)National Natural Science Foundation of China (Nos.52211530034, 82273236)Guangdong Provincial Basic and Applied Basic Research Foundation (Nos.2022A151522004, 2022A1515220042)Science and Technology Innovation Commission of Shenzhen (Nos.JSGG20210802153410031, JCYJ20220530141609021)Science and Technology Plan of Shenzhen Nanshan District (No.NS016)Discipline Leader Foundation of Huazhong University of Science and Technology Union Shenzhen Hospital (No.YN2021002)Crosswise Project of Daan Gene (No.HXKY2022002)。
文摘Liposomes are one of the significant classes of antitumor nanomaterials and the most successful nanomedicine drugs in clinical translation. However, it is difficult to accurately reveal liposome delivery modes and drug release rates at different p H values to assess the biodistribution and drug delivery pathways in vivo. Here, we established a strategy to integrate Bi-doped carbon quantum dots(CQDs)with liposomes to produce fluorescence visualization and therapeutic effects, namely lipo/Bi-doped CQDs.Lipo/Bi-doped CQDs show good water solubility and physicochemical properties, which can be used for in vitro labeling of colon cancer(CT26) cells and in vivo imaging localization tracking tumors for monitoring. Simultaneously, thanks to the excellent p H sensitivity and ion doping characteristic of Bi-doped CQDs, lipo/Bi-doped CQDs can be used to reveal the drug release rate of liposomes at different p H values and exhibit potential effects in vivo antitumor therapy.
基金supported by the National Natural Science Foundation of China (31670576)Introduction of the International Advanced Forestry Science and Technology Program (20154-44)
文摘A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC,DG RGPIN-2013-201697 and SPG STPGP-2016-493924)Canada Foundation for Innovation/Ontario Innovation Trust(CFI/OIT,9040)+1 种基金Premier’s Research Excellence Award(PREA,2003)the University of Western Ontario(Western)for financial support to our research.ZD acknowledges the Faculty of Science and Western for a Distinguished Research Professorship(2014–2015)and Faculty Scholar Award(2015–2016).
文摘The emerging graphene quantum dots(GQDs)have gained tremendous attention for their enormous potential in biological applications,owing to their unique and tunable photoluminescence properties,exceptional physicochemical features,high biocompatibility,small sizes and low costs.This mini review aims to update the latest results in rapidly evolving bioimaging research and to provide critical insights into exciting future developments.We firstly provide a brief review of their synthesis and optical properties and then place emphasis on both in vitro and in vivo imaging applications.