This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfa...In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.展开更多
The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, ...The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.展开更多
We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subje...We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.展开更多
A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay ...A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.展开更多
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su...In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.展开更多
Seismic cluster nodes can be monitored by monitoring system,but thresholds for link failure alarm in monitoring systems are not determined presently,especially in different types of cluster links.Communication link ty...Seismic cluster nodes can be monitored by monitoring system,but thresholds for link failure alarm in monitoring systems are not determined presently,especially in different types of cluster links.Communication link types are discussed in seismic profession.By analyzing the characteristics of various links,the main performance metric,network latency,was proposed,which influenced states of communication links and gave the monitoring results deviation formula for judging the cluster monitoring system at different delay thresholds settings based on multiple-link delay error ratio analysis algorithm we offered.From the final experimental data of the monitoring system,fault alarm thresholds settings were posed under five different communication links,which had the instruction significance to the cluster monitoring in seismic profession.展开更多
The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully ...Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.展开更多
Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantag...Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.展开更多
The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phas...The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.展开更多
As the traditional methods can not meet the requirements of marine radioactivity monitoring,a radioactivity monitoring sensor used in marine field has been proposed.This sensor is based on Nal(TI) scintillation crysta...As the traditional methods can not meet the requirements of marine radioactivity monitoring,a radioactivity monitoring sensor used in marine field has been proposed.This sensor is based on Nal(TI) scintillation crystal and employs the special shielding method,the anticoincidence design,the spectrum stabilization algorithm of characteristic peaks and the Monte Carlo simulation fitting calibration formula.Through the continuous tests of terminals and the activity test for target nuclide ^(40)K,it is found that the sensor is stable and the error is less than 10%.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
In order to optimize monitoring points and monitoring factor, the relationshipbetween pollutants and soil sample were established by correspondence analysis.Thestudy results show that the reflecting monitoring points ...In order to optimize monitoring points and monitoring factor, the relationshipbetween pollutants and soil sample were established by correspondence analysis.Thestudy results show that the reflecting monitoring points and monitoring factors in thegraphic on the same factor axis can clearly express the intrinsic link between pollutantsand monitoring points and distribution characteristics.To determine the main monitoringpoint and the main monitoring indicators can reduce and optimize the number of monitoringpoints under the premise of ensuring the typical and representative of monitoring data.Using the correlation of pollutants can reduce the number of monitoring indicators and improvethe effectiveness of data collection.展开更多
As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change ...As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization.展开更多
A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If e...A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.展开更多
Introduction: Delayed gastric emptying (DGE) often occurs in patients with gastroesophageal reflux (GER) due to neurological impairment (NI). 13C has been used as an alternative tool for measuring the gastric emptying...Introduction: Delayed gastric emptying (DGE) often occurs in patients with gastroesophageal reflux (GER) due to neurological impairment (NI). 13C has been used as an alternative tool for measuring the gastric emptying rates. The aim of this study was to predict gastric emptying in children with GER using 13C-acetate breath test (ABT) by 24-hour pH monitoring. Methods: Nineteen patients were divided into 2 groups: a DGE group with NI (14 patients), and normal-emptying group without NI (5 patients). The liquid test meal consisted of RacolTM (5 ml/kg) mixed with 13C-acetate (50 mg for infants, 100 mg for children, and 150 mg for adolescents). 13CO2 was measured using a gas chromatograph-isotope ratio mass spectrometer. The results are expressed as the % of 13C expired per hour and cumulative 13C excretion over a 3-hour periods including the parameters of half excretion and lag time. Results: The mean half excretion time was 1.762 hour in the DGE group and 1.095 hour in the normal-emptying group (P = 0.0196). The mean lag time was 0.971 hour in the DGE group and 0.666 hour in the normal-emptying group (P = 0.0196). Therefore, DGE was significantly more prevalent in the DGE compared to the normal-emptying group. The percentage of the time when the pH was less than 4 on 24-hour esophageal pH monitoring was 21.6% ± 9.2% in the DGE group and 28.5% ± 11.6% in the normal-emptying group (P = 0.4634). Conclusion: The percentage of time when the pH is less than 4 on 24-hour pH monitoring cannot predict DGE measured by the 13C-ABT in GER.展开更多
Online monitoring of the curing temperature field is essential to improving the quality and efficiency of the manufacturing process of composite parts.Traditional embedded sensor-based technologies have difficulty mon...Online monitoring of the curing temperature field is essential to improving the quality and efficiency of the manufacturing process of composite parts.Traditional embedded sensor-based technologies have difficulty monitoring the full temperature field or have to introduce heterogeneous items that could have an undesired impact on the part.In this paper,a non-contact,full-field monitoring method based on deep learning that predicts the internal temperature field of composite parts in real time using surface temperature measurements of auxiliary materials is proposed.Using the proposed method,an average temperature monitoring accuracy of 97%is achieved in various heating patterns.In addition,this method also demonstrates satisfying feasibility when a stronger thermal barrier covers the part.This method was experimentally validated during the self-resistance electric heating process,in which the monitoring accuracy reached 93.1%.This method can potentially be applied to automated manufacturing and process control in the composites industry.展开更多
Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an o...Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an online data server. Specialist doctors can access this data as needed, allowing them to assess the patient’s initial condition and provide advice at any time. This approach enhances the quality and reach of health services. The module, designed and installed using modern technology, minimizes latency and maximizes data accuracy while reducing delay and battery drain. An accompanying app motivates public acceptance and ease of use. Various sensors, including ECG, SpO2, gyroscope, PIR, temperature-humidity, and BP, collect data processed by an Arduino microcontroller. Data transmission is handled by a WiFi module, with ThingSpeak and Google Sheets used for data processing and storage. The system has been fully tested, and patient data from two hospitals compared with the proposed model shows 97% accuracy.展开更多
Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests...Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.展开更多
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金Project(50678175)supported by the National Natural Science Foundation of China
文摘In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance,artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province,China.The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure,whose deformation zone lies within the top 0-4 m soil layer.The deformation of slope gradually reduces from the surface,where the greatest deformation lies in,to the deep part of slope.The average percentage of infiltration during the first 2 h is 86%,and then it reduces gradually with time because of the increase of the surface runoff.The average percentage of infiltration drop to a relatively stable value(50%)after 6 h.Rainfall infiltration causes obvious increase of pore-water pressure,which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening.The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.
基金finically supported by the Sino Probe-06-01,Special Fund Research in the Public Interest (Grant No. 201211076)National Key Basic Project (973) (Grant No. 2008CB425702)
文摘The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.
文摘We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.
基金Supported by the National Natural Science Foundation of China (60978007 61027007 61177067)
文摘A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.
基金The National Key Research and Development Program of China under contract No.2022YFC3104200the Key R&D Program of Shandong Province,China under contract No.2023ZLYS01+3 种基金the Consulting and Research Project of the Chinese Academy of Engineering under contract Nos 2022-XY-21,2022-DFZD-35,2023-XBZD-09 and 2021-XBZD-13the Major Innovation Special Project of Qilu University of Technology(Shandong Academy of Sciences),Science Education Industry Integration Pilot Project under contract No.2023HYZX01Special Funds for“Mount Taishan Scholars”Construction Projectthe Special Funds of Laoshan Laboratory.
文摘In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends.
基金National Natural Science Fundations of China(Nos.71171045 and 61301118)Shanghai Science and Technology Committee Program,China(No.15dz1207600)China Scholarship Council(No.201504190015)
文摘Seismic cluster nodes can be monitored by monitoring system,but thresholds for link failure alarm in monitoring systems are not determined presently,especially in different types of cluster links.Communication link types are discussed in seismic profession.By analyzing the characteristics of various links,the main performance metric,network latency,was proposed,which influenced states of communication links and gave the monitoring results deviation formula for judging the cluster monitoring system at different delay thresholds settings based on multiple-link delay error ratio analysis algorithm we offered.From the final experimental data of the monitoring system,fault alarm thresholds settings were posed under five different communication links,which had the instruction significance to the cluster monitoring in seismic profession.
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.
基金Projects(41074010,40904004)supported by National Natural Science Foundation of ChinaProject(LEDM2010B12)supported by the Scientific Research Foundation of Key Laboratory for Land Environment and Disaster Monitoring of SBSM,China
文摘Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.
文摘Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.
基金Financial support from the National Natural Science Foundation of China (No. 41074010)the Jiangsu Innovation Works Fund of Postgraduate (No. CXZZ11-0299)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.
基金financially supported by International Science&Technology Cooperation Program of China(No.2013DFR90220)Science and Technology Plan of Shandong Province(No.2015GSF115001)
文摘As the traditional methods can not meet the requirements of marine radioactivity monitoring,a radioactivity monitoring sensor used in marine field has been proposed.This sensor is based on Nal(TI) scintillation crystal and employs the special shielding method,the anticoincidence design,the spectrum stabilization algorithm of characteristic peaks and the Monte Carlo simulation fitting calibration formula.Through the continuous tests of terminals and the activity test for target nuclide ^(40)K,it is found that the sensor is stable and the error is less than 10%.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.
基金Supported by the Public Welfare Research Program of State Environmental Protection Administration(200909065)
文摘In order to optimize monitoring points and monitoring factor, the relationshipbetween pollutants and soil sample were established by correspondence analysis.Thestudy results show that the reflecting monitoring points and monitoring factors in thegraphic on the same factor axis can clearly express the intrinsic link between pollutantsand monitoring points and distribution characteristics.To determine the main monitoringpoint and the main monitoring indicators can reduce and optimize the number of monitoringpoints under the premise of ensuring the typical and representative of monitoring data.Using the correlation of pollutants can reduce the number of monitoring indicators and improvethe effectiveness of data collection.
基金supported jointly by the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory in Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501).
文摘As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization.
文摘A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.
文摘Introduction: Delayed gastric emptying (DGE) often occurs in patients with gastroesophageal reflux (GER) due to neurological impairment (NI). 13C has been used as an alternative tool for measuring the gastric emptying rates. The aim of this study was to predict gastric emptying in children with GER using 13C-acetate breath test (ABT) by 24-hour pH monitoring. Methods: Nineteen patients were divided into 2 groups: a DGE group with NI (14 patients), and normal-emptying group without NI (5 patients). The liquid test meal consisted of RacolTM (5 ml/kg) mixed with 13C-acetate (50 mg for infants, 100 mg for children, and 150 mg for adolescents). 13CO2 was measured using a gas chromatograph-isotope ratio mass spectrometer. The results are expressed as the % of 13C expired per hour and cumulative 13C excretion over a 3-hour periods including the parameters of half excretion and lag time. Results: The mean half excretion time was 1.762 hour in the DGE group and 1.095 hour in the normal-emptying group (P = 0.0196). The mean lag time was 0.971 hour in the DGE group and 0.666 hour in the normal-emptying group (P = 0.0196). Therefore, DGE was significantly more prevalent in the DGE compared to the normal-emptying group. The percentage of the time when the pH was less than 4 on 24-hour esophageal pH monitoring was 21.6% ± 9.2% in the DGE group and 28.5% ± 11.6% in the normal-emptying group (P = 0.4634). Conclusion: The percentage of time when the pH is less than 4 on 24-hour pH monitoring cannot predict DGE measured by the 13C-ABT in GER.
基金supported by the Major Program of National Natural Science Foundation of China(Grant No.52090052)General Program of National Natural Science Foundation of China(Grant No.51875288)the authors sincerely appreciate the continuous support provided by their industrial collaborators.
文摘Online monitoring of the curing temperature field is essential to improving the quality and efficiency of the manufacturing process of composite parts.Traditional embedded sensor-based technologies have difficulty monitoring the full temperature field or have to introduce heterogeneous items that could have an undesired impact on the part.In this paper,a non-contact,full-field monitoring method based on deep learning that predicts the internal temperature field of composite parts in real time using surface temperature measurements of auxiliary materials is proposed.Using the proposed method,an average temperature monitoring accuracy of 97%is achieved in various heating patterns.In addition,this method also demonstrates satisfying feasibility when a stronger thermal barrier covers the part.This method was experimentally validated during the self-resistance electric heating process,in which the monitoring accuracy reached 93.1%.This method can potentially be applied to automated manufacturing and process control in the composites industry.
文摘Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an online data server. Specialist doctors can access this data as needed, allowing them to assess the patient’s initial condition and provide advice at any time. This approach enhances the quality and reach of health services. The module, designed and installed using modern technology, minimizes latency and maximizes data accuracy while reducing delay and battery drain. An accompanying app motivates public acceptance and ease of use. Various sensors, including ECG, SpO2, gyroscope, PIR, temperature-humidity, and BP, collect data processed by an Arduino microcontroller. Data transmission is handled by a WiFi module, with ThingSpeak and Google Sheets used for data processing and storage. The system has been fully tested, and patient data from two hospitals compared with the proposed model shows 97% accuracy.
基金the National Natural Science Foundation of China(No.51771079)the China Postdoctoral Science Foundation(No.2020M682650).
文摘Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.