期刊文献+
共找到8,791篇文章
< 1 2 250 >
每页显示 20 50 100
Quantum Tunneling Enhanced Hydrogen Desorption from Graphene Surface: Atomic versus Molecular Mechanism
1
作者 Yangwu Tong Yong Yang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第8期58-68,共11页
We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations,with focus on the effects of quantum tunneling.At low temperatures,quantum tunneling plays a dominant ro... We study the desorption mechanism of hydrogen isotopes from graphene surface using first-principles calculations,with focus on the effects of quantum tunneling.At low temperatures,quantum tunneling plays a dominant role in the desorption process of both hydrogen monomers and dimers.In the case of dimer desorption,two types of mechanisms,namely the traditional one-step desorption in the form of molecules(molecular mechanism),and the two-step desorption in the form of individual atoms(atomic mechanism),are studied and compared.For the ortho-dimers,the dominant desorption mechanism is found to switch from the molecular mechanism to the atomic mechanism above a critical temperature,which is∼300K and 200K for H and D,respectively. 展开更多
关键词 desorption QUANTUM mechanism
下载PDF
Efficient desorption and reuse of collector from the flotation concentrate:A case study of scheelite
2
作者 Liming Tao Jianjun Wang +6 位作者 Dejin Liao Wenkai Jia Zihan Zhao Wenfang Che Zhongxu Qi Wei Sun Zhiyong Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2435-2444,共10页
Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor... Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants. 展开更多
关键词 scheelite concentrate COLLECTOR desorption REUSE FLOTATION
下载PDF
Ultra-soft Desorption Assisted Mass Spectrometry using Picosecond Infrared Laser for the Detection of lons in the Liquid Surface
3
作者 Ziyuan Li Yue Wang +2 位作者 Tiantian Tong Ziwei Chen Shan Xi Tian 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期461-464,I0093,共5页
To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to i... To identify the species in liquid surface using mass spectrometry,we must eliminate or reduce interferences during the vaporization or desorption of the species from the liquid surface.It is much more challenging to isolate the ionic,larger species from the liquid surface,because of the frangible structures and the higher solvation energies of those species.Here we demonstrate a new mass spectrometry in which the ionic species at the liquid surface can be desorbed with ultrasoft infrared picosecond laser pulses while the liquid surface is not breached.This laser desorption assisted mass spectrometry is not only a powerful tool to detect the fragile species but also promising to investigate vibrational energy transfer dynamics in the liquid surface. 展开更多
关键词 Ultrasoft desorption Infrared laser Picosecond pulse Mass spectrometry Liquid surface
下载PDF
Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption:Experimental Analysis and Molecular Simulation
4
作者 Nannan Liu Hengchen Qi +1 位作者 Hui Xu Yanfeng He 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1731-1741,共11页
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ... Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions. 展开更多
关键词 Carbonate rocks WETTABILITY sulfate ions CONCENTRATION molecular simulation desorption
下载PDF
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
5
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)C nanoreactor Carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
下载PDF
Pore structure of low‑permeability coal and its deformation characteristics during the adsorption–desorption of CH4/N2 被引量:1
6
作者 Pengfei Ji Haifei Lin +5 位作者 Xiangguo Kong Shugang Li Biao Hu Pei Wang Di He Songrui Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期107-127,共21页
The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efe... The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources. 展开更多
关键词 Low-permeability coal Pore structure Adsorption–desorption Deformation characteristics Strain model
下载PDF
Desorption of Methylene Blue Adsorbed on Activated Carbon from Cocoa Pod Shell
7
作者 David Léonce Kouadio Yapo Aristide Hermann Yapi +4 位作者 Djedjess Essoh Jules César Meledje Kacou Alain Paterne Dalogo Djamatché Paul Valery Akesse Brou Dibi Karim Sory Traore 《Open Journal of Applied Sciences》 CAS 2023年第5期605-617,共13页
Environmental protection has become a concern for the world. For this reason, the objective of this work is to remove methylene blue adsorbed on activated carbon. The coal used comes from cocoa pod shells. Before pyro... Environmental protection has become a concern for the world. For this reason, the objective of this work is to remove methylene blue adsorbed on activated carbon. The coal used comes from cocoa pod shells. Before pyrolysis, the shells were ground, sieved and impregnated with orthophosphoric acid. Before desorption, the activated carbons were initially saturated with MB. These saturated coals were brought into contact with a sodium chloride (NaCl) solution and then stirred. The evolution of the resorbed MB concentration was monitored by spectrophotometry. The desorption tests showed a remarkable elimination from the first 10 minutes. The desorption kinetics comprises two phases: a rapid kinetics between 0 and 30 minutes and a slow kinetics between 30 and 60 minutes. The desorption of the dye reaches a concentration aqual to 0.84 mg/l at pH = 4 at temperature = 80°C. For modeling, the coefficient of the Langmuir II model is greater than or equal to O.9893. The model of Langmuir III is less than or equal to 0.9373. The Freundlich model coefficient is 0.9842 or less. The desorption is thefore carried out on energy-homogeneous adsorption sites and without any interaction between the adsorbed cations of the dye. Experimental parameters such as pH, temperature and concentration of sodium chloride (NaCl) solution influence the desorption of MB. And the model of Langmuir II describes well the process of desorption of the MB. 展开更多
关键词 desorption Activated Carbon Methylene Blue ISOTHERM Sodium Chloride
下载PDF
Experimental and Numerical Research on Water Transport during Adsorption and Desorption in Cement-Based Materials
8
作者 Xiang Zhang Miao Su +3 位作者 Wenjie Yu Zhen Lei Jun Ren Juntong Qu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1487-1507,共21页
The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and deso... The durability of cement-based materials is related to water transport and storage in their pore network under different humidity conditions.To understand the mechanism and characteristics of water adsorption and desorption processes from the microscopic scale,this study introduces different points of view for the pore space model generation and numerical simulation of water transport by considering the“ink-bottle”effect.On the basis of the pore structure parameters(i.e.,pore size distribution and porosity)of cement paste and mortar with water-binder ratios of 0.3,0.4 and 0.5 obtained via mercury intrusion porosimetry,randomly formed 3D pore space models are generated using two-phase transformation on Gaussian random fields and verified via image analysis method of mathematical morphology.Considering the Kelvin-Laplace equation and the influence of“ink-bottle”pores,two numerical calculation scenarios based on mathematical morphology are proposed and applied to the generated model to simulate the adsorption-desorption process.The simulated adsorption and desorption curves are close to those of the experiment,verifying the effectiveness of the developed model and methods.The obtained results characterize water transport in cement-based materials during the variation of relative humidity and further explain the hysteresis effect due to“ink-bottle”pores from the microscopic scale. 展开更多
关键词 Cement-based material adsorption and desorption ink-bottle effect pore space modeling mathematical morphology
下载PDF
Study of the Temperature-Programmed Desorption of Carbon Dioxide (CO2) on Zeolites X Modified with Bivalent Cations
9
作者 Charly Mve Mfoumou Francis Ngoye +4 位作者 Pradel Tonda-Mikiela Ferdinand Evoung Evoung Landry Biyoghe Bi-Ndong Thomas Belin Samuel Mignard 《Journal of Environmental Protection》 CAS 2023年第1期66-82,共17页
Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<s... Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX. 展开更多
关键词 Adsorption Faujasite X Chemisorbed and Physisorbed CO2 Exchanged Zeolites Bivalent Cations Temperature-Programmed desorption (TPD) Infrared
下载PDF
Study on the Effects of Polyacrylamide on Phosphorus Adsorption and Desorption Characteristics of Soil Aggregates 被引量:7
10
作者 杨雪芹 王旭东 《Agricultural Science & Technology》 CAS 2008年第3期149-152,共4页
[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorp... [Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions. 展开更多
关键词 Lou soil Polyacrylamide(PAM) AGGREGATE PHOSPHORUS ADSORPTION desorption
下载PDF
Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite 被引量:5
11
作者 陈永贵 贺勇 +2 位作者 叶为民 隋旺华 肖明明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3482-3489,共8页
The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value... The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value of the solution, temperature and desorption isotherms, were investigated by the batch experiments. The results show that the adsorbed Cr(III) on GMZ bentonite can be easily extracted by the desorbent. Kinetics examination shows that desorption is slower than adsorption, and the desorption rate increases with time and reaches the equilibrium after 3 h. The final desorption ratios of Cr(III) are 89.4%, 56.5%and 77.2%in the desorption solution with 0.1 mol/L HCl, 1 mol/L NaCl, and 1 mol/L CaCl2, respectively, and the concentration can promote the desorption progress. Furthermore, the results of successive regeneration cycles indicate that the bentonite has a good regeneration ability and reusability. The pH value is an important factor in the Cr(III) desorption from the GMZ bentonite. The results of adsorption and desorption isotherms show that both adsorption and desorption isotherms are consistent with the Freundlich equation. The comparison of adsorption and desorption isotherms implies that the adsorption/desorption hysteresis is negligible and the transport of Cr(III) in bentonite can be described by a reversible adsorption process. 展开更多
关键词 GMZ bentonite Cr(III) desorption isotherms
下载PDF
Study on Enhancement of PCBs Desorption in Soil by Surfactants 被引量:11
12
作者 黄卫红 李勇 杨岚钦 《Agricultural Science & Technology》 CAS 2010年第1期73-76,共4页
[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were ... [Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were studied as well as their distribution in water and soil. Effects of rationing on desorption of PCBs were also analyzed. [Result]The potential of single surfactant to enhance the desorption of PCBs from soil in order was Tween 80 SDBS HTAB. Three surfactants were largely adsorbed on soil and the sorption followed HTABTween 80SDBS. The desorption of PCBs increased significantly and linearly with the increase of aqueous micelle concentration of surfactants. [Conclusion]Enhancing effect of three surfactants on PCBs desorption were obtained,which will provide theoretical basis for further analyzing. 展开更多
关键词 SURFACTANT PCBS desorption Aqueous micelle concentration
下载PDF
Hydrogen desorption kinetics mechanism of Mg-Ni hydride under isothermal and non-isothermal conditions 被引量:2
13
作者 陈朝轶 陈辉林 +1 位作者 马亚芹 刘静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期160-166,共7页
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli... The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed. 展开更多
关键词 Mg-Ni hydride hydrogen desorption kinetics model isothermal condition non-isothermal condition
下载PDF
Influence Factors on Particle Growth for On-line Aerosol Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry 被引量:1
14
作者 夏玮玮 提汝芳 +2 位作者 张子良 郑海洋 方黎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期269-273,I0001,共6页
An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization,... An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization, which allows matrix addition by condensation onto the laboratory-generated bioaerosol particles. The final coated particle exiting from the con- denser is then introduced into the aerodynamic particle sizer spectrometer or home-built aerosol laser time-of-flight mass spectrometer, and its aerodynamic size directly effects on the matrix-to-analyte molar ratio, which is very important for MALDI technique. In order to observe the protonated analyte molecular ion, and then determine the classification of bi- ological aerosols, the matrix-to-analyte molar ratio must be appropriate. Four experimental parameters, including the temperature of the heated reservoir, the initial particle size, its number concentration, and the matrix material, were tested experimentally to analyze their influences on the final particle size. This technique represents an on-line system of detection that has the potential to provide rapid and reliable identification of airborne biological aerosols. 展开更多
关键词 Matrix-assisted laser desorption/ionization Particle growth Homogeneous condensation Evaporation/condensation flow cell
下载PDF
Adsorption and Desorption Characteristics of Cadmium and Lead in Typical Paddy Soils of Jiangxi Province and Its Environmental Risk Assessment 被引量:1
15
作者 常娟 白玲 +1 位作者 冷婧 汪小强 《Agricultural Science & Technology》 CAS 2016年第7期1621-1626,共6页
[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were ... [Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils. 展开更多
关键词 Paddy soil Cadmium and lead Competitive adsorption and desorption Environmental risk assessment
下载PDF
Adsorption and Desorption of Natural Zeolite on NH_4^+ 被引量:1
16
作者 胡克伟 《Agricultural Science & Technology》 CAS 2014年第8期1253-1255,1257,共4页
The adsorption and desorption kinetic of natural zeolite on NH4+ was stud-ied by lab analysis. The results showed that the adsorption and desorption kinetic of natural zeolite on NH4+ coincided with the first-order ... The adsorption and desorption kinetic of natural zeolite on NH4+ was stud-ied by lab analysis. The results showed that the adsorption and desorption kinetic of natural zeolite on NH4+ coincided with the first-order kinetics, modified Freundlich equation, parabolic diffusion model, and heterogeneous diffusion model. The desorp-tion of the adsorbed NH4+ was far rapider than the adsorption, which can be fin-ished within 60 min. 展开更多
关键词 Natural zeolite ADSORPTION desorption KINETICS
下载PDF
Adsorption/desorption behavior between a novel amphoteric granular lignin adsorbent and reactive red K-3B in aqueous solutions 被引量:15
17
作者 LIUMing-hua HONGShu-nan +1 位作者 HUANGJian-hui ZHANHuai-yu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期212-214,共3页
A novel amphoteric granular lignin adsorbent(AGLA) was prepared using magnesium lignosulfonate as a raw material which was provided by a straw sulfite pulp mill in Guangdong Province, China. A reactive dye(red K-3B) w... A novel amphoteric granular lignin adsorbent(AGLA) was prepared using magnesium lignosulfonate as a raw material which was provided by a straw sulfite pulp mill in Guangdong Province, China. A reactive dye(red K-3B) was used as an adsorbate to investigate the adsorption behavior by static and mobile ways. The removal of reactive red K-3B was found to be initially pH and concentration dependent. Moreover, an increase of solution temperature ranging from 5℃ to 60℃ helped to enhance the rate of intraparticle diffusion of adsorbate and changes in the size of the pores of the adsorbent and thus to reduce the adsorption time. The total breakthrough adsorption capacity was 531 mg/g, and the saturated adsorption capacity was 560 mg/g, which prevailed over the activated carbons evidently. The reactive red K-3B adsorbed on AGLA could be recovered with a mixture of alcohol, NaCl and HCl aqueous solutions. The recovery percentage could reach 92.4%. 展开更多
关键词 LIGNIN AMPHOTERIC granular adsorbent adsorption desorption dying effluent
下载PDF
Effect of dissolved organic matter on adsorption and desorption of mercury by soils 被引量:24
18
作者 YANG, Yongkui LIANG, Li WANG, Dingyong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1097-1102,共6页
Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from hum... Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from humus soil (DOMH), rice straw (DOMR), and pig manure (DOMP). The presence of DOM obviously reduced Hg maximum adsorption capacity with up to 40% decreases over the control, being an order of DOMH (250.00 mg/kg)< DOMR (303.03 mg/kg) < DOMP (322.58 mg/kg) < CK (control 416.67 mg/kg) for the... 展开更多
关键词 mercury (Hg) dissolved organic matter (DOM) adsorption desorption
下载PDF
Effect of temperature on the sorption and desorption of perfluorooctane sulfonate on humic acid 被引量:12
19
作者 Chengxia Jia, Chun You, Gang Pan State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第3期355-361,共7页
Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, sugges... Sorption and desorption of perfluorooctane sulfonate (PFOS) on humic acid at different temperatures were studied. It was found that the sorption process could be modeled with power kinetic equation very well, suggesting that diflusion predominated the sorption of PFOS on the humic acid. The sorption capacity was doubled when the temperature increased from 5 to 35°C, and thermodynamics parameters △G0 was calculated to be –7.11 to –5.04 kJ/mol, △H0 was 14.2 kJ/mol, and △S 0 was 69.5 J/(mol·K), indicating that the sorption was a spontaneous, endothermic, and entropy driven process. Desorption hysteresis occurred at all studied temperatures which suggested that humic acid may be an important sink of PFOS in the environment. 展开更多
关键词 perfluorooctane sulfonate SORPTION desorption TEMPERATURE humic acid
下载PDF
Adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) in paddy soils cultivated for various years in the subtropical China 被引量:22
20
作者 Liang Ma Renkou Xu Jun Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期689-695,共7页
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The... The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils. 展开更多
关键词 adsorption and desorption Cu(Ⅱ) Pb(Ⅱ) cultivation chronosequence paddy soil
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部