Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced....In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.展开更多
In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in ...In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.展开更多
In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was des...In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.展开更多
In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole st...In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.展开更多
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The...With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.展开更多
Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress ...Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeles...To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ...The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.展开更多
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r...In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.展开更多
In-situ stress measurement for deep reservoir formation is difficult in terms of security, reliability and technique. Acoustic velocity anisotropy test is a basic method for stress measurement of rock cores, which is ...In-situ stress measurement for deep reservoir formation is difficult in terms of security, reliability and technique. Acoustic velocity anisotropy test is a basic method for stress measurement of rock cores, which is based on the distribution of acoustic velocity in different directions around rock cores. The heterogeneity of core samples, such as fractures and gravel contained, can also lead to wave velocity anisotropy. Therefore, the corresponding reliability evaluation method is established to exclude some other anisotropy factors caused by non-tectonic stresses. In this paper, the reliability of testing results is evaluated from three aspects, i.e. phase difference, anisotropy index and waveform, to remove the factors caused by non-tectonic stresses.展开更多
In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of mang...In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of manganin piezoresistive stress gauge having 50 Ω low-pressure narrow grid-like foil.It is shown that this new instrument can improve measurement accuracy remarkably by reducing the so-called strain effect.Moreover,relationship between shear stress and longitudinal stress within a certain range of the latter is obtained.展开更多
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
文摘In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.
基金supported by the National Natural Science Foundation of China (No. 50490271)
文摘In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.
文摘In order to solve the difficult conditions of soft rock,water-trickling and hard-maintain of main air-return roadway in Tarangaole Colliery,high pretensioned stress and intensive bolt-shotcrete support program was designed and mechanical property of shotcrete layer was specially monitored through utilizing a type of concrete stress meter with oscillating chord after the program was carried out.It was indicated that,due to rock pressure and support resistance,the interior of shotcrete layer would emerge diverse stresses in axial,radial and tangential directions.With time passing internal stresses in three directions,whose average values were-0.061,0.043 and 0.517 MPa respectively,fluctuated first and then tended to stability slowly.The axial and radial stresses were relatively smaller than tangential stress which was 11,12 times the two formers respectively.Along the section of roadway,axial and tangential stresses distributed symmetrically and increased gradually from the top of arch to the waist of wall,but reduced at the foot of wall.Radial stresses reduced from the top of arch to the waist of arch first,and then increased in the waist of wall.Axial stresses were tensile substantially,except for stresses in arch vault tending to compressive,but all the radial stresses were compressive.Nevertheless,tangential stresses in the wall were compressive and tangential stresses in the arch were tensile.During the period of roadway excavating,the stress of shotcrete layer was less than its ultimate bearing capacity,with no significant stress concentration.At the end of this article,some suggests are given to shotcrete support design.
基金Projects(10702072, 10632100) supported by the National Nature Science Foundation of China
文摘In order to obtain the distribution rules of in situ stress and mining-induced stress of Beiminghe Iron Mine, the stress relief method by overcoring was used to measure the in situ stress, and the MC type bore-hole stress gauge was adopted to measure the mining-induced stress. In the in situ stress measuring, the technique of improved hollow inclusion cells was adopted, which can realize complete temperature compensation. Based on the measuring results, the distribution model of in situ stress was established and analyzed. The in situ stress measuring result shows that the maximum horizontal stress is 1.75-2.45 times of vertical stress and almost 1.83 times of the minimum horizontal stress in this mineral field. And the mining-induced stress measuring result shows that, according to the magnitude of front abutment pressure the stress region can be separated into stress-relaxed area, stress- concentrated area and initial stress area. At the -50 m mining level of this mine, the range of stress-relaxed area is 0-3 m before mining face; the range of stress-concentrated area is 3-55 m before mining face, and the maximum mining-induced stress is 16.5-17.5 MPa, which is 15-20 m from the mining face. The coefficient of stress concentration is 1.85.
基金founded by Project of National Natural Science Foundation of China “Study on the Anelastic Strain Recovery Compliance in the In-situ Stress Measurement by ASR Method”, No 41404080the Project of Geological Survey “Survey on the In-situ Stress Field in Southern China”
文摘With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.
文摘Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50490271)
文摘To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
文摘The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.
基金Supported by the PetroChina Company Limited (112002Kt0090001)
文摘In-situ stress measurement for deep reservoir formation is difficult in terms of security, reliability and technique. Acoustic velocity anisotropy test is a basic method for stress measurement of rock cores, which is based on the distribution of acoustic velocity in different directions around rock cores. The heterogeneity of core samples, such as fractures and gravel contained, can also lead to wave velocity anisotropy. Therefore, the corresponding reliability evaluation method is established to exclude some other anisotropy factors caused by non-tectonic stresses. In this paper, the reliability of testing results is evaluated from three aspects, i.e. phase difference, anisotropy index and waveform, to remove the factors caused by non-tectonic stresses.
基金Sponsored by the National Natural Science of China(10872035)
文摘In this paper,experiments of one-dimensional plane plate impact on polymethylmethacrylate(PMMA) targets are conducted,in which dynamic transverse stresses induced in the targets are measured using a new type of manganin piezoresistive stress gauge having 50 Ω low-pressure narrow grid-like foil.It is shown that this new instrument can improve measurement accuracy remarkably by reducing the so-called strain effect.Moreover,relationship between shear stress and longitudinal stress within a certain range of the latter is obtained.