Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried ...Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.展开更多
Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C fo...Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
We report the thickness dependence of critical current density (Jc) in YBa2Cu3O7-x (YBCO) films with BaZrO3 (BZO) and Y2O3 additions grown on single crystal LaAlO3 substrates by metalorganic deposition using tri...We report the thickness dependence of critical current density (Jc) in YBa2Cu3O7-x (YBCO) films with BaZrO3 (BZO) and Y2O3 additions grown on single crystal LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). Comparing with pttre YBCO films, the Jc of BZO/Y2O3-doped YBCO films was significantly enhanced. It was also found that with the increase of the thickness of YBCO film from 0.25 μm to 1.5 μm, the Ic of BZO/Y2O3-doped YBCO film increased from 130 A/cm to 250 A/cm and yet Jc of YBCO film decreased from 6.5 MA/cm2 to 2.5 M A/cm2. The thick BZO/Y2O3-doped MOD-YBCO film showed lower Jc, which is mainly attributed to the formation of a-axis grains and pores.展开更多
This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive ...This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average refiectances (400-1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.展开更多
Without extra heating, Al2O3 thin films were deposited on a hydrogen-terminated Si substrate etched in hydrofluoric acid by using a self-built electron cyclotron resonance (ECR) plasma-assisted atomic layer depositi...Without extra heating, Al2O3 thin films were deposited on a hydrogen-terminated Si substrate etched in hydrofluoric acid by using a self-built electron cyclotron resonance (ECR) plasma-assisted atomic layer deposition (ALD) device with Al(CH3)3 (trimethylaluminum; TMA) and O2 used as precursor and oxidant, respectively. During the deposition process, Ar was in- troduced as a carrier and purging gas. The chemical composition and microstructure of the as-deposited Al2O3 films were characterized by using X-ray diffraction (XRD), an X-ray photo- electric spectroscope (XPS), a scanning electron microscope (SEM), an atomic force microscope (AFM) and a high-resolution transmission electron microscope (HRTEM). It achieved a growth rate of 0.24 nm/cycle, which is much higher than that deposited by thermal ALD. It was found that the smooth surface thin film was amorphous alumina, and an interfacial layer formed with a thickness of ca. 2 nm was observed between theAl2O3 film and substrate Si by HRTEM. We conclude that ECR plasma-assisted ALD can growAl2O3 films with an excellent quality at a high growth rate at ambient temperature.展开更多
The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain ...The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr. By introducing the applied strain, a modified grain boundaries (GBs) in the REBCO film is developed. lattice model combining the strain and misorientation of A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain εr on the variation of the critical current with the applied strain are extensively investigated. Furthermore by using the developed lattice model, the irreversible strain εirr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.展开更多
This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin fi...This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.展开更多
Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scann...Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er^3+ films might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (^2H11/2→^4I15/2, ^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) upconversion emissions. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er^3+ was also investigated.展开更多
Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmissi...Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.展开更多
Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a hig...Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in β-Ga_2O_3 grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 e V.展开更多
Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_...Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.展开更多
Pure and rare earth doped gadolinium oxide (Gd 2O 3) waveguide films were prepared by a simple sol-gel process and dip-coating method. Structure of Gd 2O 3 films annealed at different temperature was investigated ...Pure and rare earth doped gadolinium oxide (Gd 2O 3) waveguide films were prepared by a simple sol-gel process and dip-coating method. Structure of Gd 2O 3 films annealed at different temperature was investigated by X-ray diffraction and transmission electron microscopy. Oriented growth of (400) face of Gd 2O 3 has been observed when the films were deposited on amorphous substrate. The refractive index and thickness of films were determined by m-lines spectroscopy. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and the propagation length is about 3.5 cm. Luminescence properties of europium ions doped films were measured by waveguide fluorescence spectroscopy, which shows disordered environment for Eu 3+ at 400 ℃.展开更多
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i...VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.展开更多
文摘Spray pyrolysis method was used to deposit Lutetium Oxide (Lu<sub>2</sub>O<sub>3</sub>) thin films using lutetium (III) chloride as source material and water as oxidizer. Annealing was carried out in argon atmosphere at 450°C for 60 minutes of the films. To investigate the composition and stoichiometry of sprayed as-deposited and annealed Lu<sub>2</sub>O<sub>3</sub> thin films, depth profile studies using X-ray photoelectron spectroscopy (XPS) was done. Nearly stoichiometric was observed for both annealed and as-deposited films in inner and surface layers.
文摘Ga<sub>2</sub>O<sub>3</sub> thin films were fabricated by spray pyrolysis method using gallium acetylacetonate as source material and water as oxidizer. The films were annealed at 450°C for 60 minutes in argon atmosphere. X-ray photoelectron spectroscopy (XPS) depth profile studies were carried out to analyze the stoichiometry and composition of sprayed as-deposited and annealed Ga<sub>2</sub>O<sub>3</sub> thin films. Surface layers and the inner layers of as-deposited and annealed films were found nearly stoichiometric.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
基金supported by the National Natural Science Foundation of China(Grant No.51272250)the National Basic Research Program of China(Grant No.2011CBA00105)+1 种基金the National High Technology Research and Development Program of China(Grant No.2014AA032702)the Beijing Natural Science Foundation,China(Grant No.2152035)
文摘We report the thickness dependence of critical current density (Jc) in YBa2Cu3O7-x (YBCO) films with BaZrO3 (BZO) and Y2O3 additions grown on single crystal LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). Comparing with pttre YBCO films, the Jc of BZO/Y2O3-doped YBCO films was significantly enhanced. It was also found that with the increase of the thickness of YBCO film from 0.25 μm to 1.5 μm, the Ic of BZO/Y2O3-doped YBCO film increased from 130 A/cm to 250 A/cm and yet Jc of YBCO film decreased from 6.5 MA/cm2 to 2.5 M A/cm2. The thick BZO/Y2O3-doped MOD-YBCO film showed lower Jc, which is mainly attributed to the formation of a-axis grains and pores.
基金supported by the Special Project of Shanghai Nano-technology (Grant No.0852nm02400)the National Natural Science Foundation of China (Grant Nos.10804072 and 60806031)the Key Fundamental Project of Shanghai (GrantNo.08JC1410400)
文摘This paper reports that stoichiometric, amorphous, and uniform Er2O3 films are deposited on Si(001) substrates by a radio frequency magnetron sputtering technique. Ellipsometry measurements show that the refractive index of the Er2O3 films is very close to that of a single layer antireflection coating for a solar cell with an air surrounding medium during its working wavelength. For the 90-nm-thick film, the reflectance has a minimum lower than 3% at the wavelength of 600 nm and the weighted average refiectances (400-1000 nm) is 11.6%. The obtained characteristics indicate that Er2O3 films could be a promising candidate for antireflection coatings in solar cells.
基金supported by National Natural Science Foundation of China(No.11175024)the Beijing Natural Science Foundation(No.1112012)+1 种基金Science and Technology on Surface Engineering Laboratorythe Beijing Education Committee(No.BM201002),2011BAD24B01,KM201110015008,KM201010015005 and PHR20110516
文摘Without extra heating, Al2O3 thin films were deposited on a hydrogen-terminated Si substrate etched in hydrofluoric acid by using a self-built electron cyclotron resonance (ECR) plasma-assisted atomic layer deposition (ALD) device with Al(CH3)3 (trimethylaluminum; TMA) and O2 used as precursor and oxidant, respectively. During the deposition process, Ar was in- troduced as a carrier and purging gas. The chemical composition and microstructure of the as-deposited Al2O3 films were characterized by using X-ray diffraction (XRD), an X-ray photo- electric spectroscope (XPS), a scanning electron microscope (SEM), an atomic force microscope (AFM) and a high-resolution transmission electron microscope (HRTEM). It achieved a growth rate of 0.24 nm/cycle, which is much higher than that deposited by thermal ALD. It was found that the smooth surface thin film was amorphous alumina, and an interfacial layer formed with a thickness of ca. 2 nm was observed between theAl2O3 film and substrate Si by HRTEM. We conclude that ECR plasma-assisted ALD can growAl2O3 films with an excellent quality at a high growth rate at ambient temperature.
基金Supported by the National Natural Science Foundation of China under Grant No 11372096the Research Fund for the Doctoral Program of Higher Education of China
文摘The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr. By introducing the applied strain, a modified grain boundaries (GBs) in the REBCO film is developed. lattice model combining the strain and misorientation of A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain εr on the variation of the critical current with the applied strain are extensively investigated. Furthermore by using the developed lattice model, the irreversible strain εirr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10274026)
文摘This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.
基金supported by the grants from the Nature Science Foundation of Zhejiang Province (Y406309)Research Program from Science and Technology Bureau of Jinhua City (2008-1-151)
文摘Y2O3:Er^3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er^3+ films were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er^3+ films might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (^2H11/2→^4I15/2, ^4S3/2→^4I15/2) and red (^4F9/2→^4I15/2) upconversion emissions. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er^3+ was also investigated.
文摘Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3 + Au films give the same resuits on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3 + Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3 + Au films were also observed. The photoluminescent properties of Y2O3 : Eu + Au films were investigated and results indicate that there exist an energy transfer from Eu^3 + to Au nanoparticles and this energy transfer decreases the emission of Eu^3 + in Y2O3 : Eu + Au film.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB0404201the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Center,PAPDthe State Grid Shandong Electric Power Company
文摘Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in β-Ga_2O_3 grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 e V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572033,51572241,61774019,61704153,and 11404029)the Fund of State Key Laboratory of IPOC(BUPT)+1 种基金the Open Fund of IPOC(BUPT)Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.
文摘Pure and rare earth doped gadolinium oxide (Gd 2O 3) waveguide films were prepared by a simple sol-gel process and dip-coating method. Structure of Gd 2O 3 films annealed at different temperature was investigated by X-ray diffraction and transmission electron microscopy. Oriented growth of (400) face of Gd 2O 3 has been observed when the films were deposited on amorphous substrate. The refractive index and thickness of films were determined by m-lines spectroscopy. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and the propagation length is about 3.5 cm. Luminescence properties of europium ions doped films were measured by waveguide fluorescence spectroscopy, which shows disordered environment for Eu 3+ at 400 ℃.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401046, 51572042, 61131005, 61021061, and 61271037)International Cooperation Projects (Nos. 2013HH0003 and 2015DFR50870)+3 种基金the 111 Project (No. B13042)the Sichuan Province S&T program (Nos. 2014GZ0003, 2015GZ0091, and 2015GZ0069)Fundamental Research Funds for the Central Universitiesthe start-up fund from the University of Electronic Science and Technology of China
文摘VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.