In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
We report a type-Ⅱ InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN archite...We report a type-Ⅱ InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN architecture for MW and LW detections, and hetero-junction NIP architecture for VLW detection. It is found that the spectral crosstalks can be significantly reduced by controlling the minority carriers transport via doping beryllium in the two active regions of NIPIN section. The crosstalk detection at MW, LW, and VLW signals are achieved by selecting the bias voltages on the device. At 77K, the cutoff wavelengths of the three-color detection are 5.3μm (at OmV), 141μm (at 300mV) and 19μm (at -20mV) with the detectivities of 4.6xlO11 cm.Hzl/ZW-1, 2.3×10^10 cm.Hzl/2W-1, and 1.0×10^10cm.Hzl/2W-1 for MW, LW and VLW. The crosstalks of the MW channel, LW channel, and VLW channel are almost 0, 0.25, and 0.6, respectively.展开更多
We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is ...We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.展开更多
本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外...本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。展开更多
In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer...In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.展开更多
Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserte...Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, Ⅴ/Ⅲ beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsee for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.展开更多
This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark cur...This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.展开更多
We demonstrate a high-operating-temperature(HOT)mid-wavelength InAs/GaSb superlattice heterojunction in-frared photodetector grown by metal-organic chemical vapor deposition.High crystalline quality and the near-zero ...We demonstrate a high-operating-temperature(HOT)mid-wavelength InAs/GaSb superlattice heterojunction in-frared photodetector grown by metal-organic chemical vapor deposition.High crystalline quality and the near-zero lattice mis-match of a InAs/GaSb superlattice on an InAs substrate were evidenced by high-resolution X-ray diffraction.At a bias voltage of-0.1 V and an operating temperature of 200 K,the device exhibited a 50%cutoff wavelength of~4.9μm,a dark current dens-ity of 0.012 A/cm^(2),and a peak specific detectivity of 2.3×10^(9) cm·Hz^(1/2)/W.展开更多
We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is th...We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.展开更多
By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray d...By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.展开更多
报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ...报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ML InAs/7 ML GaSb和10 ML InAs/10 ML GaSb.焦平面阵列像元中心距为30μm.在77 K时测试,器件双色波段的50%响应截止波长分别为4.2μm和5.5μm,其中N-on-P器件平均峰值探测率达到6.0×10^(10) cmHz^(1/2)W^(-1),盲元率为8.6%;P-on-N器件平均峰值探测率达到2.3×10~9 cmHz^(1/2)W^(-1),盲元率为9.8%.红外焦平面偏压调节成像测试得到较为清晰的双波段成像.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB643903,2013CB932904,2012CB932701 and 2011CB922201the National Special Funds for the Development of Major Research Equipment and Instruments of China under Grant No 2012YQ140005+7 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01010200the China Postdoctoral Science Foundation-funded Project under Grant No 2014M561029the Program for New Century Excellent Talents in University under Grant No NCET-10-0066the National High-Technology Research and Development Program of China under Grant No 2013AA031502the Science and Technology Innovation Project of Harbin City under Grant No2011RFLXG006the National Natural Science Foundation of China under Grant Nos 61274013,U1037602,61306013,51202046,and 61290303the China Postdoctoral Science Foundation under Grant Nos 2012M510144 and 2013T60366the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2013006 and HIT.BRETIII.201403
文摘We report a type-Ⅱ InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN architecture for MW and LW detections, and hetero-junction NIP architecture for VLW detection. It is found that the spectral crosstalks can be significantly reduced by controlling the minority carriers transport via doping beryllium in the two active regions of NIPIN section. The crosstalk detection at MW, LW, and VLW signals are achieved by selecting the bias voltages on the device. At 77K, the cutoff wavelengths of the three-color detection are 5.3μm (at OmV), 141μm (at 300mV) and 19μm (at -20mV) with the detectivities of 4.6xlO11 cm.Hzl/ZW-1, 2.3×10^10 cm.Hzl/2W-1, and 1.0×10^10cm.Hzl/2W-1 for MW, LW and VLW. The crosstalks of the MW channel, LW channel, and VLW channel are almost 0, 0.25, and 0.6, respectively.
基金Project supported by the Beijing Scholars Program(Grant No.74A2111113)the Research Project of Beijing Education Committee(Grant No.KM202111232019)+1 种基金the National Natural Science Foundation of China(Grant No.62105039)the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07)
文摘We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.
文摘本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB643903,2013CB932904,2012CB932701,and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+2 种基金the National Natural Science Foundation of China(Grant Nos.61274013,U1037602,61306013,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)China Postdoctoral Science Foundation(Grant No.2014M561029)
文摘In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB351902,2015CB932402 and 2012CB619203the National Natural Science Foundation of China under Grant Nos 61177070,11374295 and U1431231the National Key Research Program of China under Grant No 2011ZX01015-001
文摘Type-Ⅱ InAs/GaSb superlattiees made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, Ⅴ/Ⅲ beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsee for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.
基金Project supported by the Natural Science Foundation of Beijing (Grant No. 4112058)the National Natural Science Foundation of China (Grant Nos. 60906027, 60906028, 61036010, and 60636030)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education of China
文摘This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.
基金supported partly by the Natural Science Foundation of China with Grant No.61874179,No.61804161,No.61975121 and No.61605236partly by the National Key Research and Development Program of China(No.2019YFB2203400)。
文摘We demonstrate a high-operating-temperature(HOT)mid-wavelength InAs/GaSb superlattice heterojunction in-frared photodetector grown by metal-organic chemical vapor deposition.High crystalline quality and the near-zero lattice mis-match of a InAs/GaSb superlattice on an InAs substrate were evidenced by high-resolution X-ray diffraction.At a bias voltage of-0.1 V and an operating temperature of 200 K,the device exhibited a 50%cutoff wavelength of~4.9μm,a dark current dens-ity of 0.012 A/cm^(2),and a peak specific detectivity of 2.3×10^(9) cm·Hz^(1/2)/W.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874179,61804161,and 61975121)the National Key Research and Development Program of China(Grant No.2019YFB2203400).
文摘We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.
基金Project supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104,2018YFA0209102,2019YFA0705203,and2019YFA070104)the National Natural Science Foundation of China(Grant Nos.61790581,61274013,and 62004189)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22).
文摘By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.
文摘报道了320×256元InAs/GaSb II类超晶格红外双色焦平面阵列探测器的初步结果.探测器采用PN-NP叠层双色外延结构,信号提取采用顺序读出方式.运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为7 ML InAs/7 ML GaSb和10 ML InAs/10 ML GaSb.焦平面阵列像元中心距为30μm.在77 K时测试,器件双色波段的50%响应截止波长分别为4.2μm和5.5μm,其中N-on-P器件平均峰值探测率达到6.0×10^(10) cmHz^(1/2)W^(-1),盲元率为8.6%;P-on-N器件平均峰值探测率达到2.3×10~9 cmHz^(1/2)W^(-1),盲元率为9.8%.红外焦平面偏压调节成像测试得到较为清晰的双波段成像.