InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by me...InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.展开更多
Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region...Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.展开更多
The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmissio...The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmission electron mi-croscope (TEM), and temperature-dependent photoluminescence (PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodic- ity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization po- tentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence, and the corresponding activation energy (or the localization potential) increases with the increase of the barrier thickness. The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers, i.e., clusters with lower In contents aggregate into clusters with higher In contents.展开更多
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11...In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.展开更多
This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap la...This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.展开更多
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wav...The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.展开更多
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared w...A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.展开更多
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection curr...The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.展开更多
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LE...In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.展开更多
Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is i...Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.展开更多
Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-p...Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.展开更多
BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric...BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.展开更多
We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentrat...We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentration ratio until 60suns.The peak Voc of InGaN/GaN MQW solar cells,which has a predominant peak wavelength of 456nm from electroluminescence measurements,is found to be 2.45 V when the concentration ratio reaches 333×.Furthermore,the dcpendence of conversion efficiency and fill factor on concentration ratio are analyzed.展开更多
Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire ...Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire substrate,which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM),which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x−ray diffraction(XRD)θ/2θscan is carried out on the symmetric(0002)of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission,two main emissions of blue and amber light from these MQWs are found,which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.展开更多
We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron ...We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron irradiation(2×10^(13) e/cm^(2)),and then decreases with the cumulative electron dose.Meanwhile,the full width at half maximum of the PL spectrum narrows after low-dose electron irradiation and widens when the irradiation dose is relatively high.With respect to the yellow photoluminescence,there is no significant change until the electron fluence has accumulated up to 10^(14) e/cm^(2).展开更多
We study the procedure of miniband formation in CaN/lAIN constant-total-effective-radius multi-shell quantum dots (CTER-MSQDs) by calculating the subband energies. We find a different behavior of the miniband widths...We study the procedure of miniband formation in CaN/lAIN constant-total-effective-radius multi-shell quantum dots (CTER-MSQDs) by calculating the subband energies. We find a different behavior of the miniband widths and miniband gaps when the number of wells changes. It is shown that with increasing the inner quantum dot radiusRin, the number of minigaps decreases; with increasing the outer quantum dot radius Rout, the number of minigaps increases. We show that in the CTER-MSQDs systems, two kinds of minigaps exist: in the type (i) ones, minigaps increase monotonically when the number of wells increases while in the type (ii) ones, with increasing the number of wells, some of minigaps create, increase, at a critical number of wells decrease and finally vanish. Thus tuning of the m/nigaps and miniband widths in the CTER-MSQDs systems by using the number of wells, inner and outer quantum dot radii Rin and Rout is now possible.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2013CB632804,2011CB301900,and 2012CB3155605)the National Natural Science Foundation of China(Grant Nos.61176015,61210014,51002085,61321004,61307024,and 61176059)the High Technology Research and Development Program of China(Grant No.2012AA050601)
文摘InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
基金This work was supported by the National Natural Science Foundation of China(Nos.U21A20493,62104204,and 62234011)the National Key Research and Development Program of China(No.2017YFE0131500)the President’s Foundation of Xiamen University(No.20720220108).
文摘Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.
基金National Natural Science Foundation of China(No.62204127)the Natural Science Foundation of Jiangsu Province(No.BK20215093)State Key Laboratory of Luminescence and Applications(No.SKLA‒2021‒04)。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61106044 and 61274052)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110121110029)+1 种基金the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013121024)the Natural Science Foundation of Fujian Province of China(Grant No.2013J05096)
文摘The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) with different barrier thick-nesses are studied by means of high resolution X-ray diffraction (HRXRD), a cross-sectional transmission electron mi-croscope (TEM), and temperature-dependent photoluminescence (PL) measurements. HRXRD and cross-sectional TEM measurements show that the interfaces between wells and barriers are abrupt and the entire MQW region has good periodic- ity for all three samples. As the barrier thickness is increased, the temperature of the turning point from blueshift to redshift of the S-shaped temperature-dependent PL peak energy increases monotonously, which indicates that the localization po- tentials due to In-rich clusters is deeper. From the Arrhenius plot of the normalized integrated PL intensity, it is found that there are two kinds of nonradiative recombination processes accounting for the thermal quenching of photoluminescence, and the corresponding activation energy (or the localization potential) increases with the increase of the barrier thickness. The dependence on barrier thickness is attributed to the redistribution of In-rich clusters during the growth of barrier layers, i.e., clusters with lower In contents aggregate into clusters with higher In contents.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,and 61574134)。
文摘In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60876007 and 10974165)the Research Program of Xiamen Municipal Science and Technology Bureau,China (Grant No. 2006AA03Z110)
文摘This paper studies the exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses by low temperature photoluminescence (PL) measurements. With increasing cap layer thickness, the PL peak energy shifts to lower energy and the coupling strength between the exciton and longitudinal- optical (LO) phonon, described by Huang-Rhys factor, increases remarkably due to an enhancement of the internal electric field. With increasing excitation intensity, the zero-phonon peak shows a blueshift and the Huang-Rhys factor decreases. These results reveal that there is a large built-in electric field in the well layer and the exciton-LO-phonon coupling is strongly affected by the thickness of the cap layer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076013,51102003,and 60990313)the National Basic Research Program of China (Grant No. 2012CB619304)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100001120014)
文摘The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.
基金Project supported by the National Natural Science Foundation of China (Grant No. U1174001)the Ministry of Education Scientific Research Foundation for Returned Scholars,China (Grant No. 20091001)+1 种基金the Scientific and Technological Plan of Guangzhou City,China (Grant No. 2010U1-D00131)the Natural Science Foundation of Guangdong Province,China (Grant No. S2011010003400)
文摘A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB619304)the National Natural Science Foundation of China(Grant Nos.61076013 and 51272008)the Beijing Municipal Science and Technology Project,China(Grant No.H030430020000)
文摘The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204360 and 61210014)the Science and Technology Planning Projects of Guangdong Province,China(Grant Nos.2014B050505020,2015B010114007,and 2014B090904045)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134407110008)the Guangzhou Municipal Science and Technology Project of Guangdong Province,China(Grant No.2016201604030027)the Zhongshan Science and Technology Project of Guangdong Province,China(Grant No.2013B3FC0003)
文摘In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金Science Challenge Project,China(Grant No.JCKY2016212A503)One Hundred Person Project of the Chinese Academy of Sciences
文摘Four blue-violet light emitting InGaN/GaN multiple quantum well(MQW) structures with different well widths are grown by metal–organic chemical vapor deposition. The carrier localization effect in these samples is investigated mainly by temperature-dependent photoluminescence measurements. It is found that the localization effect is enhanced as the well width increases from 1.8 nm to 3.6 nm in our experiments. The temperature induced PL peak blueshift and linewidth variation increase with increasing well width, implying that a greater amplitude of potential fluctuation as well as more localization states exist in wider wells. In addition, it is noted that the broadening of the PL spectra always occurs mainly on the low-energy side of the PL spectra due to the temperature-induced band-gap shrinkage, while in the case of the widest well, a large extension of the spectral curve also occurs in the high energy sides due to the existence of more shallow localized centers.
基金Supported by the National Science Foundation for Young Scientists of China under Grant No 11604137the Jiangxi Province Postdoctoral Science Foundation Funded Project under Grant No 2015KY32the State Key Program of Research and Development of China under Grant Nos 2016YFB040060 and 2016YFB0400601
文摘Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61076042 and 60607006)the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205)the National High Technology Research and Development Program of China (Grant No. 2011AA03A106)
文摘BaTiO3 (BTO) ferroelectric thin films are prepared by the sol,el method. The fabrication and the optical properties of an InGaN/GaN multiple quantum well light emitting diode (LED) with amorphous BTO ferroelectric thin film are studied. The photolumineseence (PL) of the BTO ferroelectric film is attributed to the structure. The ferroeleetric film which annealed at 673 K for 8 h has the better PL property. The peak width is about 30 nm from 580 nm to 610 nm, towards the yellow region. The mixed electroluminescence (EL) spectrum of InGaN/GaN multiple quantum well LED with 150-nm thick amorphous BTO ferroelectric thin film displays the blue-white light. The Commission Internationale De L'Eclairage (CIE) coordinate of EL is (0.2139, 0.1627). EL wavelength and intensity depends on the composition, microstructure and thickness of the ferroelectric thin film. The transmittance of amorphous BTO thin film is about 93% at a wavelength of 450 nm-470 nm. This means the amorphous ferroelectrie thin films can output more blue-ray and emission lights. In addition, the amorphous ferroelectric thin films can be directly fabricated without a binder and used at higher temperatures (200 ℃-400 ℃). It is very favourable to simplify the preparation process and reduce the heat dissipation requirements of an LED. This provides a new way to study LEDs.
基金Supported by the Joint Projects under Grant Nos Y1AAQ11001 and Y1EAQ31001the Suzhou Solar Cell Research Project under Grant No ZXJ0903the Ministry of Science and Technology of China under Grant No 2010DFA22770.
文摘We report InGaN/GaN multi-quantum well (MQW) solar cells with a comparatively high open-circuit voltage and good concentration properties.Thc open circuit voltage (Voc) keeps increasing logarithmically with concentration ratio until 60suns.The peak Voc of InGaN/GaN MQW solar cells,which has a predominant peak wavelength of 456nm from electroluminescence measurements,is found to be 2.45 V when the concentration ratio reaches 333×.Furthermore,the dcpendence of conversion efficiency and fill factor on concentration ratio are analyzed.
基金by the National Basic Research Program of China under Grant No 2011CB301900the National High-Technology Research and Development Program of China under Grant No 2009AA03A198+2 种基金the National Natural Science Foundation of China under Grant Nos 60721063,60676057,60731160628,60820106003,60990311 and 60906025the Natural Science Foundation of Jiangsu Province(BK2008019,BK2009255)the Research Funds from NJU-Yangzhou Institute of Opto-electronics.
文摘Blue-red complex light emitting InGaN/GaN multi-quantum well(MQW)structures are fabricated by metal organic chemical vapor deposition(MOCVD).The structures are grown on a 2-inch diameter(0001)oriented(c−face)sapphire substrate,which consists of an approximately 2-µm−thick GaN template and a five-period layer consisting of a 4.9-nm-thick In0.18Ga0.82N well layer and a GaN barrier layer.The surface morphology of the MQW structures is observed by an atomic force microscope(AFM),which indicates the presence of islands of several tens of nanometers in height on the surface.The high resolution x−ray diffraction(XRD)θ/2θscan is carried out on the symmetric(0002)of the InGaN/GaN MQW structures.At least four order satellite peaks presented in the XRD spectrum indicate that the thickness and alloy compositions of the individual quantum wells are repeatable throughout the active region.Besides the 364 nm GaN band edge emission,two main emissions of blue and amber light from these MQWs are found,which possibly originate from the carrier recombinations in the InGaN/GaN QWs and InGaN quasi-quantum dots embedded in the QWs.
基金Supported by the National Natural Science Foundation of China under Grant No 11275262.
文摘We investigate the photoluminescence(PL)emission from InGaN/GaN multiple quantum-well structures before and after 1 MeV electron irradiation.The PL peak intensity exhibits a slight enhancement after low-dose electron irradiation(2×10^(13) e/cm^(2)),and then decreases with the cumulative electron dose.Meanwhile,the full width at half maximum of the PL spectrum narrows after low-dose electron irradiation and widens when the irradiation dose is relatively high.With respect to the yellow photoluminescence,there is no significant change until the electron fluence has accumulated up to 10^(14) e/cm^(2).
基金Supported by the Iranian Nanotechnology Initiative Councilthe Shahrood University of Technology
文摘We study the procedure of miniband formation in CaN/lAIN constant-total-effective-radius multi-shell quantum dots (CTER-MSQDs) by calculating the subband energies. We find a different behavior of the miniband widths and miniband gaps when the number of wells changes. It is shown that with increasing the inner quantum dot radiusRin, the number of minigaps decreases; with increasing the outer quantum dot radius Rout, the number of minigaps increases. We show that in the CTER-MSQDs systems, two kinds of minigaps exist: in the type (i) ones, minigaps increase monotonically when the number of wells increases while in the type (ii) ones, with increasing the number of wells, some of minigaps create, increase, at a critical number of wells decrease and finally vanish. Thus tuning of the m/nigaps and miniband widths in the CTER-MSQDs systems by using the number of wells, inner and outer quantum dot radii Rin and Rout is now possible.
文摘为了得到高性能的 Ga N基发光器件 ,有源层采用 MOCVD技术和表面应力的不均匀性诱导方法生长了 In-Ga N量子点 ,并通过原子力显微镜 (AFM)、透射电子显微镜 (TEM)和光致发光 (PL )谱对其微观形貌和光学性质进行了观察和研究 .AFM和 TEM观察结果表明 :In Ga N/ Ga N为平均直径约 30 nm,高度约 2 5 nm的圆锥 ;In Ga N量子点主要集中在圆锥形的顶部 ,其密度达到 5 .6× 10 1 0 cm- 2 .室温下 ,In Ga N量子点材料 PL谱强度大大超出相同生长时间的 In Ga N薄膜材料 ,这说明 In Ga N量子点有望作为高性能有源层材料应用于 Ga N基发光器件 .