An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotio...An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotion in channel current, transconductance, current gain cut-off frequency, and maximum oscillation frequency of In P-based HEMTs. Moreover, direct current(DC) and radio frequency(RF) characteristic properties and their reduction rates have been compared in detail between single Si-doped and double Si-doped structures after 75-keV proton irradiation with dose of 5× 10^(11) cm^(-2),1× 10^(12) cm^(-2), and 5× 10^(12) cm^(-2). DC and RF characteristics for both structures are observed to decrease gradually as irradiation dose rises, which particularly show a drastic drop at dose of 5× 10^(12) cm^(-2). Besides, characteristic degradation degree of the double Si-doped structure is significantly lower than that of the single Si-doped structure, especially at large proton irradiation dose. The enhancement of proton radiation tolerance by the insertion of another Si-doped plane could be accounted for the tremendously increased native carriers, which are bound to weaken substantially the carrier removal effect by irradiation-induced defects.展开更多
The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect ene...The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.展开更多
The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/Ino.53Ga0.47As digital alloy t...The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/Ino.53Ga0.47As digital alloy triangular well layers and tensile Ino.53Ga0.47As/InAiGaAs digital alloy barrier layers. The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality. Photo- luminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers. A significantly improved PL signal of around 2.1μm at 300 K and an EL signal of around 1.95μm at 100 K have been obtained.展开更多
A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common ...A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.展开更多
Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters ...Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.展开更多
InP-based high electron mobility transistors(HEMTs) will be affected by protons from different directions in space radiation applications. The proton irradiation effects on InAlAs/InGaAs hetero-junction structures o...InP-based high electron mobility transistors(HEMTs) will be affected by protons from different directions in space radiation applications. The proton irradiation effects on InAlAs/InGaAs hetero-junction structures of InP-based HEMTs are studied at incident angles ranging from 0 to 89.9° by SRIM software. With the increase of proton incident angle, the change trend of induced vacancy defects in the InAlAs/InGaAs hetero-junction region is consistent with the vacancy energy loss trend of incident protons. Namely, they both have shown an initial increase, followed by a decrease after incident angle has reached 30°. Besides, the average range and ultimate stopping positions of incident protons shift gradually from buffer layer to hetero-junction region, and then go up to gate metal. Finally, the electrical characteristics of InP-based HEMTs are investigated after proton irradiation at different incident angles by Sentaurus-TCAD. The induced vacancy defects are considered self-consistently through solving Poisson's and current continuity equations. Consequently, the extrinsic transconductance, pinch-off voltage and channel current demonstrate the most serious degradation at the incident angle of 30?, which can be accounted for the most severe carrier sheet density reduction under this condition.展开更多
从物理机制上分析了超高速InP/InGaAs SHBT碰撞电离与温度的关系,通过加入表示温度的参数和简化电场计算,得到一种改进的碰撞电离模型.同时针对自有工艺和器件特性,采用SDD(symbolically defined device)技术建立了一个包括碰撞电离和...从物理机制上分析了超高速InP/InGaAs SHBT碰撞电离与温度的关系,通过加入表示温度的参数和简化电场计算,得到一种改进的碰撞电离模型.同时针对自有工艺和器件特性,采用SDD(symbolically defined device)技术建立了一个包括碰撞电离和自热效应的InP/InGaAs SHBT的直流模型.模型内嵌入HP-ADS中仿真并与测试结果进行比较,准确地拟合了InP/InGaAs SHBT的器件特性.展开更多
In P基材料具有载流子迁移率高、能带易于剪裁等优点,是毫米波、太赫兹电路的理想材料。利用In P基材料实现了HBT、HEMT、SBD器件及毫米波、太赫兹电路。HBT、HEMT的fmax分别达到600 GHz和1.0 THz,SBD的截止频率达到9.5 THz。基于In P ...In P基材料具有载流子迁移率高、能带易于剪裁等优点,是毫米波、太赫兹电路的理想材料。利用In P基材料实现了HBT、HEMT、SBD器件及毫米波、太赫兹电路。HBT、HEMT的fmax分别达到600 GHz和1.0 THz,SBD的截止频率达到9.5 THz。基于In P HBT工艺研制了W波段放大器、W波段宽带高功率VCO、160 GHz高功率谐波振荡器等多款电路;基于In P HEMT工艺研制了W波段宽带低噪声放大器、300 GHz放大器等电路;基于In P SBD工艺,研制了170~500GHz频段多款太赫兹倍频电路模块,以及220 GHz^750 GHz频段多款检波器模块。研究结果表明,In P基器件和电路性能优异,可广泛应用于安检成像、星载空间技术、导航制导、无线通信等领域。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Promotion Funding for Excellent Young Backbone Teacher of Henan Province,China(Grant No.2019GGJS017)。
文摘An anti-radiation structure of In P-based high electron mobility transistor(HEMT) has been proposed and optimized with double Si-doped planes. The additional Si-doped plane under channel layer has made a huge promotion in channel current, transconductance, current gain cut-off frequency, and maximum oscillation frequency of In P-based HEMTs. Moreover, direct current(DC) and radio frequency(RF) characteristic properties and their reduction rates have been compared in detail between single Si-doped and double Si-doped structures after 75-keV proton irradiation with dose of 5× 10^(11) cm^(-2),1× 10^(12) cm^(-2), and 5× 10^(12) cm^(-2). DC and RF characteristics for both structures are observed to decrease gradually as irradiation dose rises, which particularly show a drastic drop at dose of 5× 10^(12) cm^(-2). Besides, characteristic degradation degree of the double Si-doped structure is significantly lower than that of the single Si-doped structure, especially at large proton irradiation dose. The enhancement of proton radiation tolerance by the insertion of another Si-doped plane could be accounted for the tremendously increased native carriers, which are bound to weaken substantially the carrier removal effect by irradiation-induced defects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Development Fund for Outstanding Young Teachers in Zhengzhou University of China(Grant No.1521317004)the Doctoral Student Overseas Study Program of Zhengzhou University,China
文摘The performance damage mechanism of InP-based high electron mobility transistors(HEMTs) after proton irradiation has been investigated comprehensively through induced defects.The effects of the defect type, defect energy level with respect to conduction band ET, and defect concentration on the transfer and output characteristics of the device are discussed based on hydrodynamic model and Shockley–Read–Hall recombination model.The results indicate that only acceptorlike defects have a significant influence on device operation.Meanwhile, as defect energy level ETshifts away from conduction band, the drain current decreases gradually and finally reaches a saturation value with ETabove 0.5 eV.This can be attributed to the fact that at sufficient deep level, acceptor-type defects could not be ionized any more.Additionally,the drain current and transconductance degrade more severely with larger acceptor concentration.These changes of the electrical characteristics with proton radiation could be accounted for by the electron density reduction in the channel region from induced acceptor-like defects.
基金supported by the National Natural Science Foundation of China (Grant No. 60876034)the National Basic Research Program of China (Grant No. 2006CB604903)
文摘The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/Ino.53Ga0.47As digital alloy triangular well layers and tensile Ino.53Ga0.47As/InAiGaAs digital alloy barrier layers. The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality. Photo- luminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers. A significantly improved PL signal of around 2.1μm at 300 K and an EL signal of around 1.95μm at 100 K have been obtained.
基金Supported by the National Basic Research Program of China under Grant No 2011CB301900the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BY2013077
文摘A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102the National Natural Science Foundation of China under Grant Nos 61474111 and 61274046
文摘Two-mode converters at 1.3μm, aiming at applications in mode-division multiplexing in Ethernet systems, are proposed and experimentally demonstrated. Based on multimode interference couplers, the two-mode converters with 50% and 66% mode conversion efficiencies are designed and fabricated on InP substrates. AIode conver- sion from the fundamental mode (TEo) to the first order mode (TE1) is successfully demonstrated within the wavelength range of 1280-1320nm. The 1.3-μm mode converters should be important devices in mode-division multiplexing systems in Ethernet systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775191,61404115,61434006,and 11475256)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(Grant No.18IRTSTHN016)the Development Fund for Outstanding Young Teachers in Zhengzhou University of China(Grant No.1521317004)
文摘InP-based high electron mobility transistors(HEMTs) will be affected by protons from different directions in space radiation applications. The proton irradiation effects on InAlAs/InGaAs hetero-junction structures of InP-based HEMTs are studied at incident angles ranging from 0 to 89.9° by SRIM software. With the increase of proton incident angle, the change trend of induced vacancy defects in the InAlAs/InGaAs hetero-junction region is consistent with the vacancy energy loss trend of incident protons. Namely, they both have shown an initial increase, followed by a decrease after incident angle has reached 30°. Besides, the average range and ultimate stopping positions of incident protons shift gradually from buffer layer to hetero-junction region, and then go up to gate metal. Finally, the electrical characteristics of InP-based HEMTs are investigated after proton irradiation at different incident angles by Sentaurus-TCAD. The induced vacancy defects are considered self-consistently through solving Poisson's and current continuity equations. Consequently, the extrinsic transconductance, pinch-off voltage and channel current demonstrate the most serious degradation at the incident angle of 30?, which can be accounted for the most severe carrier sheet density reduction under this condition.
基金Supported by National Natural Science Foundation of China(11775191,61404115,61434006)Development Fund for Outstanding Young Teachers in Zhengzhou University China(1521317004)