An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in I...An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in In Sb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport.Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of In Sb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.展开更多
The interplay between superconductivity and the Kondo effect has stimulated significant interest in condensed matter physics.They compete when their critical temperatures are close and can give rise to a quantum phase...The interplay between superconductivity and the Kondo effect has stimulated significant interest in condensed matter physics.They compete when their critical temperatures are close and can give rise to a quantum phase transition that can mimic Majorana zero modes.Here,we have fabricated and measured Al-InSb nanowire quantum dot-Al devices.In the Kondo regime,a supercurrent-induced zero-bias conductance peak emerges.This zero-bias peak shows an anomalous negative magnetoresistance(NMR)at weak magnetic fields.We attribute this anomalous NMR to quasiparticle trapping at vortices in the superconductor leads as a weak magnetic field is applied.The trapping effect lowers the quasiparticle-caused dissipation and thus enhances the Josephson current.This work connects the vortex physics and the supercurrent tunneling in Kondo regimes and can help further understand the physics of Josephson quantum dot system.展开更多
基金Project supported by the National Key Basic Research and Development Project of the Ministry of Science and Technology of China(Grant No.2016YFA0300601)the National Natural Science Foundation of China(Grant Nos.91221202,91421303,11374019,and 61321001)
文摘An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in In Sb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport.Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of In Sb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.
基金supported by the Swedish Research Council(VR)the National Natural Science Foundation of China(Grant Nos.92165208,11874071,91221202,91421303,and 11904399)+7 种基金the National Key Research and Development Program of China(Grant Nos.2016YFA0300601,and 2017YFA0303304)Beijing Academy of Quantum Information Sciences(Grant No.Y18G22)the financial supports by Hunan Provincial Science Foundation for Distinguished Young Scholars(Grant No.2021JJ10043)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302401)the financial support by the Spanish Ministry of Economy and Competitiveness(Grant No.PID2020-117347GBI00)the financial supports by the Spanish Ministry of Economy and Competitiveness(Grant No.PID2020-11778GB-I00)the Mara de Maeztu project CEX2021-001164-M funded by the MCIN/AEI/10.13039/501100011033the supports from CSIC Research Platform PTI-001 and through the grant LINKB20072(CSIC)。
文摘The interplay between superconductivity and the Kondo effect has stimulated significant interest in condensed matter physics.They compete when their critical temperatures are close and can give rise to a quantum phase transition that can mimic Majorana zero modes.Here,we have fabricated and measured Al-InSb nanowire quantum dot-Al devices.In the Kondo regime,a supercurrent-induced zero-bias conductance peak emerges.This zero-bias peak shows an anomalous negative magnetoresistance(NMR)at weak magnetic fields.We attribute this anomalous NMR to quasiparticle trapping at vortices in the superconductor leads as a weak magnetic field is applied.The trapping effect lowers the quasiparticle-caused dissipation and thus enhances the Josephson current.This work connects the vortex physics and the supercurrent tunneling in Kondo regimes and can help further understand the physics of Josephson quantum dot system.