为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络...为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。展开更多
针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题。本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率...针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题。本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率和抗噪声能力更高的卷积神经网络—BICNN(Convolution Neural Network based on Inception),并用BICNN卷积神经网络基于数据驱动的方式,对楼体框架模型进行了集成故障诊断研究。集成诊断结果表明BICNN具有更高的识别率和较强的抗噪声能力,而且在训练步数较少的情况下振荡次数少收敛情况良好。因此采取本研究所提出的方法,对框架结构进行故障诊断时具有高诊断率和稳定性,为维护框架结构的稳定运行具有重大安全意义。展开更多
传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意...传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意力机制的集成Inception网络模型,通过集成Attention-Inception单分支网络,实现了HRRP序列更深层次特征的提取;通过对模型的损失函数加入L2正则化,缓解小数据集在集成网络中的过拟合问题;利用Inception Ⅰ和Inception Ⅱ结构提取HRRP序列多尺度特征,并引入注意力机制计算特征序列的分配权重;加入残差结构,减缓了集成网络梯度消失问题。在预处理后的HRRP序列上进行实验结果表明,所提方法的目标识别率达到93.3%,并且与未去除噪声的HRRP序列相比目标识别率提高了14.67%。展开更多
由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了...由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了深度残差网络模型的结构,通过修改网络结构,利用Inception结构代替残差网络中的卷积层、池化层,减少模型的训练参数数量,降低时间复杂度.在此基础上,提出了基于Inception深度残差网络皮肤黑色素癌分类识别算法(Inception Deep Residual Network,IDRN),用Inception结构代替残差网络中的卷积池化层,用SeLU激活函数代替传统的ReLU函数.之后,在公开的黑色素癌皮肤镜图像ISIC2017数据集上进行实验验证.理论和实验表明,与传统的卷积神经网络ResNet50相比,本文提出的新的分类算法降低了时间复杂度,提高了识别准确率.展开更多
文摘为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。
文摘针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题。本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率和抗噪声能力更高的卷积神经网络—BICNN(Convolution Neural Network based on Inception),并用BICNN卷积神经网络基于数据驱动的方式,对楼体框架模型进行了集成故障诊断研究。集成诊断结果表明BICNN具有更高的识别率和较强的抗噪声能力,而且在训练步数较少的情况下振荡次数少收敛情况良好。因此采取本研究所提出的方法,对框架结构进行故障诊断时具有高诊断率和稳定性,为维护框架结构的稳定运行具有重大安全意义。
文摘由于皮肤黑色素癌图像存在类内差异大、样本数据集小等特点,采用深度残差网络可以有效解决训练过程中过拟合问题,提高识别准确率.但是深度残差网络模型的训练参数多,时间复杂度高.为了提高训练效率,提高识别准确率,首先从理论上分析了深度残差网络模型的结构,通过修改网络结构,利用Inception结构代替残差网络中的卷积层、池化层,减少模型的训练参数数量,降低时间复杂度.在此基础上,提出了基于Inception深度残差网络皮肤黑色素癌分类识别算法(Inception Deep Residual Network,IDRN),用Inception结构代替残差网络中的卷积池化层,用SeLU激活函数代替传统的ReLU函数.之后,在公开的黑色素癌皮肤镜图像ISIC2017数据集上进行实验验证.理论和实验表明,与传统的卷积神经网络ResNet50相比,本文提出的新的分类算法降低了时间复杂度,提高了识别准确率.