In this Letter, a test method based on oblique incidence is practically implemented in the interferometric measurement process. Three sets of wavefront data are achieved through cavity interference measurement with a ...In this Letter, a test method based on oblique incidence is practically implemented in the interferometric measurement process. Three sets of wavefront data are achieved through cavity interference measurement with a Fizeau interferometer and one oblique incidence measurement. An iterative algorithm is applied to retrieve the absolute surface shape of the test flat. By adding two sets of measurements, the absolute surface error of the interferometer's reference flat can be obtained. The new method can not only calibrate the reference flat error of interferometer, but also provide the absolute measurement method for high precision optical components applied in high power laser systems.展开更多
Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effect...Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11602280 and 61705246)
文摘In this Letter, a test method based on oblique incidence is practically implemented in the interferometric measurement process. Three sets of wavefront data are achieved through cavity interference measurement with a Fizeau interferometer and one oblique incidence measurement. An iterative algorithm is applied to retrieve the absolute surface shape of the test flat. By adding two sets of measurements, the absolute surface error of the interferometer's reference flat can be obtained. The new method can not only calibrate the reference flat error of interferometer, but also provide the absolute measurement method for high precision optical components applied in high power laser systems.
基金supported by National High Technology Research and Development Program of China (Grant Nos. 2007AA12Z144, 2009AA12Z129)Chinese COPES Project (Grant Nos. GYHY200706005, GYHY200806014)China Meteorological Administration New Technology Promotion Project (Grant No. CMATG2008Z04)
文摘Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.