期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
1
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
下载PDF
Turbopump Condition Monitoring Using Incremental Clustering and One-class Support Vector Machine 被引量:2
2
作者 HU Lei HU Niaoqing +1 位作者 QIN Guojun GU Fengshou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期474-479,共6页
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T... Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump. 展开更多
关键词 novelty detection condition monitoring incremental clustering one-class support vector machine TURBOPUMP
下载PDF
Using the Support Vector Machine Algorithm to Predict β-Turn Types in Proteins
3
作者 Xiaobo Shi Xiuzhen Hu 《Engineering(科研)》 2013年第10期386-390,共5页
The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary ... The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary structure. So development of an accurate prediction method ofβ-turn types is very necessary. In this paper, we used the composite vector with position conservation scoring function, increment of diversity and predictive secondary structure information as the input parameter of support vector machine algorithm for predicting theβ-turn types in the database of 426 protein chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, II’, IV, VI and nonturn respectively, which is better than other prediction. 展开更多
关键词 support vector machine ALGORITHM increment of Diversity VALUE Position Conservation SCORING Function VALUE Secondary Structure Information
下载PDF
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
4
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 Random FOREST ALGORITHM support vector machine ALGORITHM β-Hairpin MOTIF increment of Diversity SCORING Function Predicted Secondary Structure Information
下载PDF
基于CNN-ISVM的跨领域书写人自适应手写识别
5
作者 张墨逸 叶洪昶 +1 位作者 袁小芳 陈海燕 《计算机技术与发展》 2024年第12期187-193,共7页
用户书写风格、字形、笔迹、书写方式等方面都会存在差异,使手写识别应用具有特异性、小样本和多样式的特点,普适性的模型很难满足,必须在手写过程中对特定用户的书写进行自适应学习,使模型更好地服务于人们的个性化需求。针对此问题,... 用户书写风格、字形、笔迹、书写方式等方面都会存在差异,使手写识别应用具有特异性、小样本和多样式的特点,普适性的模型很难满足,必须在手写过程中对特定用户的书写进行自适应学习,使模型更好地服务于人们的个性化需求。针对此问题,研究者提出基于CNN-ISVM的跨领域书写人自适应手写识别方法,灵活地调整普适化模型,进行个性化的手写识别。在构造通用模型时,利用CNN作为特征提取器,对图像进行特征学习和提取,将提取的特征输入到SVM中进行分类。自适应手写识别时,引入基于错分样本触发的ISVM增量学习方法,使用增量样本和保存好的支持向量集对模型在线学习和更新。在实验中,当源域由静态手写图片组成,目标域为2组空写数据集时,每类别增量5张样本,识别率分别达到92.8%、90.42%。该方法简单易行,可以在目标域每类样本数据只有1张增量样本的情况下进行跨领域书写人自适应学习,与其它方法相比,识别率有较明显的提升。 展开更多
关键词 手写识别 书写人自适应 领域自适应 增量学习 卷积神经网络 支持向量机
下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
6
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine (LS- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
下载PDF
Support vector machine incremental learning triggered by wrongly predicted samples 被引量:1
7
作者 唐庭龙 管秋 吴义熔 《Optoelectronics Letters》 EI 2018年第3期232-235,共4页
According to the classic Karush-Kuhn-Tucker(KKT)theorem,at every step of incremental support vector machine(SVM)learning,the newly adding sample which violates the KKT conditions will be a new support vector(SV)and mi... According to the classic Karush-Kuhn-Tucker(KKT)theorem,at every step of incremental support vector machine(SVM)learning,the newly adding sample which violates the KKT conditions will be a new support vector(SV)and migrate the old samples between SV set and non-support vector(NSV)set,and at the same time the learning model should be updated based on the SVs.However,it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs.Additionally,the learning model will be unnecessarily updated,which will not greatly increase its accuracy but decrease the training speed.Therefore,how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning.In this work,a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously.Experimental results show that the proposed algorithm can achieve good performance with high efficiency,high speed and good accuracy. 展开更多
关键词 support vector machine incremental learning triggered wrongly predicted SAMPLES
原文传递
Incremental Training for SVM-Based Classification with Keyword Adjusting
8
作者 SUNJin-wen YANGJian-wu LUBin XIAOJian-guo 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期805-811,共7页
This paper analyzed the theory of incremental learning of SVM (support vector machine) and pointed out it is a shortage that the support vector optimization is only considered in present research of SVM incremental le... This paper analyzed the theory of incremental learning of SVM (support vector machine) and pointed out it is a shortage that the support vector optimization is only considered in present research of SVM incremental learning. According to the significance of keyword in training, a new incremental training method considering keyword adjusting was proposed, which eliminates the difference between incremental learning and batch learning through the keyword adjusting. The experimental results show that the improved method outperforms the method without the keyword adjusting and achieve the same precision as the batch method. Key words SVM (support vector machine) - incremental training - classification - keyword adjusting CLC number TP 18 Foundation item: Supported by the National Information Industry Development Foundation of ChinaBiography: SUN Jin-wen (1972-), male, Post-Doctoral, research direction: artificial intelligence, data mining and system integration. 展开更多
关键词 SVM (support vector machine) incremental training CLASSIFICATION keyword adjusting
下载PDF
Prediction of Protein Structural Classes Using the Theory of Increment of Diversity and Support Vector Machine 被引量:1
9
作者 WANG Fangping WANG Zhijian +1 位作者 LI Hong YANG Keli 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期260-264,共5页
Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which t... Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which the dipeptide amino acid composition of proteins is used as the source of diversity. Jackknife test shows that total prediction accuracy is 96.6% and higher than that given by other approaches. Besides, the specificity (Sp) and the Matthew's correlation coefficient (MCC) are also calculated for each protein structural class, the Sp is more than 88%, the MCC is higher than 92%, and the higher MCC and Sp imply that it is credible to use ID-SVM model predicting protein structural class. The results indicate that: 1 the choice of the source of diversity is reasonable, 2 the predictive performance of IDSVM is excellent, and3 the amino acid sequences of proteins contain information of protein structural classes. 展开更多
关键词 dipeptide amino acid composition increment of diversity support vector machines protein structure classes
原文传递
一种SVM增量学习算法α-ISVM 被引量:85
10
作者 萧嵘 王继成 +1 位作者 孙正兴 张福炎 《软件学报》 EI CSCD 北大核心 2001年第12期1818-1824,共7页
基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础... 基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础上 ,进一步提出了一种基于遗忘因子α的 SVM增量学习改进算法α- ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识 ,使得对样本进行有选择地遗忘成为可能 .理论分析和实验结果表明 ,该算法能在保证分类精度的同时 ,有效地提高训练速度并降低存储空间的占用 . 展开更多
关键词 机器学习 SVM理论 增量学习算法 α-isvm
下载PDF
适于大规模数据集的块增量学习算法:BISVM 被引量:3
11
作者 王磊 孙世新 +1 位作者 李杰 杨浩淼 《计算机应用研究》 CSCD 北大核心 2008年第1期98-100,113,共4页
对支持向量机的大规模训练问题进行了深入研究,提出一种类似SMO的块增量算法。该算法利用increase和decrease两个过程依次对每个输入数据块进行学习,避免了传统支持向量机学习算法在大规模数据集情况下急剧增大的计算开销。理论分析表... 对支持向量机的大规模训练问题进行了深入研究,提出一种类似SMO的块增量算法。该算法利用increase和decrease两个过程依次对每个输入数据块进行学习,避免了传统支持向量机学习算法在大规模数据集情况下急剧增大的计算开销。理论分析表明新算法能够收敛到近似最优解。基于KDD数据集的实验结果表明,该算法能够获得接近线性的训练速率,且泛化性能和支持向量数目与LIBSVM方法的结果接近。 展开更多
关键词 支持向量机 块增量算法 大规模训练
下载PDF
脑机接口中基于BISVM的EEG分类 被引量:1
12
作者 杨帮华 何美燕 +1 位作者 刘丽 陆文宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第8期1431-1436,共6页
针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增... 针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增量学习和减量去学习,不断判断KKT条件并更新参数,丢弃错误样本,对初始分类器模型进行更新.对2008年脑机接口竞赛数据及本实验室采集数据,用小波包分解(WPD)结合共空间模式(CSP)进行特征提取,SVM、ISVM及BISVM分类.结果表明,BISVM的平均分类准确率相对SVM及ISVM分别提高了3.3%及0.3%,BISVM平均训练时间相对ISVM从1.076s减少到0.793s.BISVM为改善计算机对大脑的适应性,实现快速实时在线的脑机接口系统奠定基础. 展开更多
关键词 脑机接口 批处理增量式支持向量机 脑电 分类
下载PDF
基于ISVM的软测量建模及其在PX生产中的应用研究 被引量:1
13
作者 张英 苏宏业 褚健 《控制与决策》 EI CSCD 北大核心 2005年第10期1102-1106,共5页
针对软测量模型存在的失效问题,提出一种基于增量支持向量机的建模方法.随着时间的推移,每次在模型中增加一个样本进行增量学习的同时,采用启发式策略去掉工作集中一个老的样本,从而可以在软测量模型中不断增加能够代表新工况信息样本... 针对软测量模型存在的失效问题,提出一种基于增量支持向量机的建模方法.随着时间的推移,每次在模型中增加一个样本进行增量学习的同时,采用启发式策略去掉工作集中一个老的样本,从而可以在软测量模型中不断增加能够代表新工况信息样本的同时控制工作样本集的规模.将所提出的软测量建模方法用于二甲苯(PX)吸附分离过程纯度的预测,结果表明所提出的建模方法以及样本替换策略可以有效地增强软测量模型适应工况变化的能力,提高其预测的精度. 展开更多
关键词 支持向量机 增量学习 软测量 PX吸附分离过程
下载PDF
基于OCISVM的矿井通风系统在线故障诊断 被引量:6
14
作者 赵丹 沈志远 刘晓青 《中国安全科学学报》 CAS CSCD 北大核心 2022年第10期76-82,共7页
为解决矿井通风系统故障样本获取困难以及在线故障诊断研究相对匮乏的问题,填补应用传感器实时监测数据进行故障分支诊断的空白,构造一分类支持向量机(OC-SVM)与增量学习(IL)相结合的OCISVM模型。首先,在离线阶段,运用传感器监测到的正... 为解决矿井通风系统故障样本获取困难以及在线故障诊断研究相对匮乏的问题,填补应用传感器实时监测数据进行故障分支诊断的空白,构造一分类支持向量机(OC-SVM)与增量学习(IL)相结合的OCISVM模型。首先,在离线阶段,运用传感器监测到的正常样本数据构造分类超平面;然后,在线检测阶段,依据IL的思想,通过引入德尔塔函数更新分类超平面;最后,利用东山矿通风系统数据库验证并分析OCISVM模型。结果表明:该模型的故障分支诊断准确率可达96.5%,诊断时间开销在毫秒级,在处理不平衡数据时稳定性更高。 展开更多
关键词 矿井通风系统 一分类支持向量机(OC-SVM) 增量学习(IL) 故障诊断 监测数据
下载PDF
一种新的SVM多层增量学习方法HISVML 被引量:1
15
作者 冯佳 宋胜利 +1 位作者 王荔 陈平 《微电子学与计算机》 CSCD 北大核心 2009年第5期216-218,222,共4页
为了有效的解决支持向量机(SVM)在文本分类中的增量学习问题,文中提出了一种基于树结构的在线学习方法-HISVML.该方法通过将增量学习任务限制在分类子树中来达到减少工作量的目的.实验证明,HISVML比普通的单层增量学习器训练时间短、准... 为了有效的解决支持向量机(SVM)在文本分类中的增量学习问题,文中提出了一种基于树结构的在线学习方法-HISVML.该方法通过将增量学习任务限制在分类子树中来达到减少工作量的目的.实验证明,HISVML比普通的单层增量学习器训练时间短、准确率高. 展开更多
关键词 支持向量机 增量学习 关键词学习 文本分类
下载PDF
Adaptive Soft-sensor Modeling Algorithm Based on FCMISVM and Its Application in PX Adsorption Separation Process 被引量:10
16
作者 傅永峰 苏宏业 +1 位作者 张英 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期746-751,共6页
To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (I... To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability. 展开更多
关键词 soft sensor fuzzy c-means incremental support vector machines heuristic sample displacement method p-xylene purity
下载PDF
基于RS-ISVM的网络入侵检测研究
17
作者 李锦源 汪宏喜 《煤炭技术》 CAS 北大核心 2013年第2期170-172,共3页
目前入侵行为有多样化和复杂化的趋势,如何快速准确地检测出新未知类型的攻击已成为研究焦点。文章将增量式学习引入支持向量机中,巧妙将粗糙集的属性约简与增量式支持向量机较强泛化能力相结合,建立一种基于RS-ISVM的网络入侵检测系统... 目前入侵行为有多样化和复杂化的趋势,如何快速准确地检测出新未知类型的攻击已成为研究焦点。文章将增量式学习引入支持向量机中,巧妙将粗糙集的属性约简与增量式支持向量机较强泛化能力相结合,建立一种基于RS-ISVM的网络入侵检测系统模型。并充分利用广义KKT条件作为判断标准,来提高分类的精度和节约训练时间,经理论分析和实验阐明了该组合模型对入侵检测的有效和合理性。 展开更多
关键词 入侵检测 粗糙集 支持向量机 增量学习
下载PDF
不平衡数据下基于SVM增量学习的指挥信息系统状态监控方法
18
作者 焦志强 易侃 +1 位作者 张杰勇 姚佩阳 《系统工程与电子技术》 EI CSCD 北大核心 2024年第3期992-1003,共12页
针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法。针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐... 针对指挥信息系统历史状态样本有限的特点,基于支持向量机(support vector machines,SVM)设计了一种面向不平衡数据的SVM增量学习方法。针对系统正常/异常状态样本不平衡的情况,首先利用支持向量生成一部分新样本,然后通过分带的思想逐带产生分布更加均匀的新样本以调节原样本集的不平衡比。针对系统监控实时性要求高且在运行过程中会有新样本不断加入的特点,采用增量学习的方式对分类模型进行持续更新,在放松KKT(Karush-Kuhn-Tucker)更新触发条件的基础上,通过定义样本重要度并引入保留率和遗忘率的方式减少了增量学习过程中所需训练的样本数量。为了验证算法的有效性和优越性,实验部分在真实系统中获得的数据集以及UCI数据集中3类6组不平衡数据集中与现有的算法进行了对比。结果表明,所提算法能够有效实现对不平衡数据的增量学习,从而满足指挥信息系统状态监控的需求。 展开更多
关键词 指挥信息系统 系统监控 支持向量机 不平衡数据 增量学习
下载PDF
火箭发动机故障检测的快速增量单分类支持向量机算法 被引量:1
19
作者 张万旋 张箭 +2 位作者 卢哲 薛薇 张楠 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期115-122,共8页
为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单... 为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。 展开更多
关键词 单分类支持向量机 特征提取 自适应检测 增量学习 异常检测
下载PDF
开集环境中基于增量学习的网络流量分类研究
20
作者 崔梦阳 董育宁 +1 位作者 邱晓晖 田炜 《软件工程》 2024年第10期23-28,共6页
面对网络流量新类别不断涌现的挑战,以及随之而来的开集识别和模型更新需求,文章提出了一种基于增量学习的开集网络流量分类方法。对于开集识别,支持向量机和K均值聚类算法的级联结构可以持续识别新类和已知类;对于模型更新,基于候选支... 面对网络流量新类别不断涌现的挑战,以及随之而来的开集识别和模型更新需求,文章提出了一种基于增量学习的开集网络流量分类方法。对于开集识别,支持向量机和K均值聚类算法的级联结构可以持续识别新类和已知类;对于模型更新,基于候选支持向量筛选的“样本回放”和新旧模型加权融合的“参数回放”方法,能有效解决“有类增量的灾难性遗忘”问题。与ISK和DACS方法相比,该方法应用在开集流量识别和分类任务中表现出显著优势,F1分数能提高1百分点至8百分点,分类速度也优于现有方法。 展开更多
关键词 网络流量分类 开集识别 增量学习 支持向量机
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部