In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso...In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.展开更多
Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. Ho...Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring s...A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation.展开更多
In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independen...In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independent method, and in the feature extraction there is not fully taken into account the characterization of fault information, it will make the process monitoring ineffective, so a fault monitoring method based on WGNPE(weighted global neighborhood preserving embedding)–GSVDD(greedy support vector data description) related and independent variables is proposed. First, mutual information method is used to separate the related variables and independent variables. Secondly, WGNPE method is used to extract the local and global structures of the related variables in batch process and highlight the fault information, GSVDD method is used to extract the process information of the independent variables quickly and effectively. Finally, the statistical monitoring model is established to achieve process monitoring based on WGNPE and GSVDD. The effectiveness of the proposed method was verified by the penicillin fermentation process.展开更多
A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis ...A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.展开更多
Based on the sample data of the listed firms on the A stock market, we analyze how the system of independent directors influence the earning conservatism from 4 dimensions designed to measure the monitoring power of t...Based on the sample data of the listed firms on the A stock market, we analyze how the system of independent directors influence the earning conservatism from 4 dimensions designed to measure the monitoring power of these independent directors: Percentage within BDs, professional capacities, stimulation and work conditions. From the empirical results, we conclude that the more powerful of the independent directors, the better the accounting conservatism, and that their positive impact increases along with the improvement on corporate governance, meanwhile the work conditions plays the most important role, and then are the percentage within BDs and their professional capacities, the stimulation and personal reputation appear the least importance.展开更多
In this paper, we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA). Unlike the conventional multi-way principal component a...In this paper, we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA). Unlike the conventional multi-way principal component analysis (MPCA) method, MLICA-PCA provides a separated interpretation for multilevel batch process data. Batch process data are partitioned into two levels: the within-batch level and the between-batch level. In each level, the Gaussian and non-Gaussian components of process information can be separately extracted. I2, T2 and SPE statistics are individually built and monitored. The new method facilitates fault diagnosis. Since the two variation levels are decomposed, the variables responsible for faults in each level can be identified and interpreted more easily. A case study of the Dupont benchmark process showed that the proposed method was more efficient and interpretable in fault detection and diagnosis, compared to the alternative batch process monitoring method.展开更多
It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G ...It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.展开更多
Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully o...Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully observed annual changes,we need to monitor demographic rates to understand factors affecting global population size.Annual reproduction success contributes to dynamic changes in population size and age structure,so an assessment of the juvenile ratio(i.e.first winter birds as a proportion of total number aged)of overwintering waterbirds can be an important indicator of the reproductive success in the preceding breeding season.Methods:During 2016-2019,we sampled juvenile ratios among 10 key waterbird species from the wetlands in the YRF.Based on these data,we here attempt to establish a simple,efficient,focused and reliable juvenile ratio monitoring scheme,to assess consistently and accurately relative annual breeding success and its contribution to the age structure among these waterbird species.Results:We compared juvenile ratio data collected throughout the winter and found that the optimal time for undertaking these samples was in the early stages of arrival for migratory waterbirds reaching their wintering area(early to mid-December).We recommend counting consistently at key points(i.e.those where>1%biogeographical flyway population were counted)at sites of major flyway importance(Poyang Lake,East Dongting Lake,Shengjin Lake,Caizi Lake,Longgan Lake and Chen Lake).Based on this,the error rate of the programme(155 planned points,the count of 10 waterbird species is 826-8955)is less than 5%.Conclusions:We established a juvenile ratio monitoring programme for 10 key waterbird species in the wetlands of the YRF,and discuss the feasibility and necessity of implementing such a future programme,and how to use these data in our monitoring and understanding of the population dynamics of these waterbird populations.展开更多
文摘In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province of China(ZR2011FM014)+1 种基金the Doctoral Fund of Shandong Province(BS2012ZZ011)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.
基金National Natural Science Foundations of China(Nos.61403256,61374132)Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities,China(No.YYY11076)
文摘A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation.
基金Supported by the National Natural Science Foundation of China(No.61763029)the Natural Science Foundation of Gansu Province(1610RJZA016)
文摘In many batch processes, there are related or independence relationships among process variables. The traditional monitoring method usually carries out a single statistical model according to the related or independent method, and in the feature extraction there is not fully taken into account the characterization of fault information, it will make the process monitoring ineffective, so a fault monitoring method based on WGNPE(weighted global neighborhood preserving embedding)–GSVDD(greedy support vector data description) related and independent variables is proposed. First, mutual information method is used to separate the related variables and independent variables. Secondly, WGNPE method is used to extract the local and global structures of the related variables in batch process and highlight the fault information, GSVDD method is used to extract the process information of the independent variables quickly and effectively. Finally, the statistical monitoring model is established to achieve process monitoring based on WGNPE and GSVDD. The effectiveness of the proposed method was verified by the penicillin fermentation process.
基金The National Natural Science Foundation ofChina(No60504033)
文摘A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.
文摘Based on the sample data of the listed firms on the A stock market, we analyze how the system of independent directors influence the earning conservatism from 4 dimensions designed to measure the monitoring power of these independent directors: Percentage within BDs, professional capacities, stimulation and work conditions. From the empirical results, we conclude that the more powerful of the independent directors, the better the accounting conservatism, and that their positive impact increases along with the improvement on corporate governance, meanwhile the work conditions plays the most important role, and then are the percentage within BDs and their professional capacities, the stimulation and personal reputation appear the least importance.
基金Project (No. 60774067) supported by the National Natural ScienceFoundation of China
文摘In this paper, we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA). Unlike the conventional multi-way principal component analysis (MPCA) method, MLICA-PCA provides a separated interpretation for multilevel batch process data. Batch process data are partitioned into two levels: the within-batch level and the between-batch level. In each level, the Gaussian and non-Gaussian components of process information can be separately extracted. I2, T2 and SPE statistics are individually built and monitored. The new method facilitates fault diagnosis. Since the two variation levels are decomposed, the variables responsible for faults in each level can be identified and interpreted more easily. A case study of the Dupont benchmark process showed that the proposed method was more efficient and interpretable in fault detection and diagnosis, compared to the alternative batch process monitoring method.
基金Project supported by NSFC(10371112)NSFHN (0411011200)SRF for ROCS,SEM
文摘It is said that a graph G is independent-set-deletable factor-critical (in short, ID-factor-critical), if, for everyindependent-set I which has the same parity as |V(G)|, G - I has a perfect matching. A graph G is strongly IM-extendable, if for every spanning supergraph H of G, every induced matching of H is included in a perfect matching of H. The κ-th power of G, denoted by G^κ, is the graph with vertex set V(G) in which two vertices are adjacent if and only if they have distance at most k in G. ID-factor-criticality and IM-extendability of power graphs are discussed in this article. The author shows that, if G is a connected graph, then G^3 and T(G) (the total graph of G) are ID-factor-critical, and G^4 (when |V(G)| is even) is strongly IM-extendable; if G is 2-connected, then D^2 is ID-factor-critical.
基金supported by the National Natural Science Foundation of China(Grant Nos.31870369,31970433)China Biodiversity Observation Networks(Sino BON)+1 种基金Innovative Research Group Project of the National Natural Science Foundation of China(CN)No.31670424。
文摘Background:In the face of continued degradation and loss of wetlands in the Yangtze River floodplain(YRF),there is an urgent need to monitor the abundance and distribution of wintering waterbirds.To understand fully observed annual changes,we need to monitor demographic rates to understand factors affecting global population size.Annual reproduction success contributes to dynamic changes in population size and age structure,so an assessment of the juvenile ratio(i.e.first winter birds as a proportion of total number aged)of overwintering waterbirds can be an important indicator of the reproductive success in the preceding breeding season.Methods:During 2016-2019,we sampled juvenile ratios among 10 key waterbird species from the wetlands in the YRF.Based on these data,we here attempt to establish a simple,efficient,focused and reliable juvenile ratio monitoring scheme,to assess consistently and accurately relative annual breeding success and its contribution to the age structure among these waterbird species.Results:We compared juvenile ratio data collected throughout the winter and found that the optimal time for undertaking these samples was in the early stages of arrival for migratory waterbirds reaching their wintering area(early to mid-December).We recommend counting consistently at key points(i.e.those where>1%biogeographical flyway population were counted)at sites of major flyway importance(Poyang Lake,East Dongting Lake,Shengjin Lake,Caizi Lake,Longgan Lake and Chen Lake).Based on this,the error rate of the programme(155 planned points,the count of 10 waterbird species is 826-8955)is less than 5%.Conclusions:We established a juvenile ratio monitoring programme for 10 key waterbird species in the wetlands of the YRF,and discuss the feasibility and necessity of implementing such a future programme,and how to use these data in our monitoring and understanding of the population dynamics of these waterbird populations.