This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t...Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.展开更多
X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetrat...X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed di...A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed distance. The dispersion measure and redshift measurements of fast radio bursts(FRBs) have been widely used to constrain the rest mass of the photon. However, all current studies analyzed the effect of the frequency-dependent dispersion for massive photons in the standard ΛCDM cosmological context. In order to alleviate the circularity problem induced by the presumption of a specific cosmological model based on the fundamental postulate of the masslessness of photons, here we employ a new model-independent smoothing technique, artificial neural network(ANN), to reconstruct the Hubble parameter H(z) function from 34 cosmic-chronometer measurements.By combining observations of 32 well-localized FRBs and the H(z) function reconstructed by ANN, we obtain an upper limit of m_(γ) ≤ 3.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 2.0 × 10^(-15)eV/c^(2)(m_(γ) ≤ 6.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 3.6 × 10^(-15)eV/c_(2)) at the 1σ(2σ) confidence level. This is the first cosmology-independent photon mass limit derived from extragalactic sources.展开更多
This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driv...This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.展开更多
Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system....Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.展开更多
The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi...The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.展开更多
When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constr...When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.展开更多
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and...Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.展开更多
Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid d...Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.展开更多
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NF...The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.展开更多
Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed...Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.展开更多
AIM:To investigate the symmetry of upper eyelid in patients with unilateral mild and moderate blepharoptosis who underwent unilateral minimally invasive combined fascia sheath(CFS)suspension.METHODS:A retrospective st...AIM:To investigate the symmetry of upper eyelid in patients with unilateral mild and moderate blepharoptosis who underwent unilateral minimally invasive combined fascia sheath(CFS)suspension.METHODS:A retrospective study of patients who underwent unilateral minimally invasive CFS suspension surgery between January 2018 and December 2021.Inclusion criteria included unilateral mild and moderate ptosis,good levator muscle function(>9 mm)and follow-up of at least 6mo.Pre-and post-operative symmetry was graded subjectively for marginal reflex distance 1(MRD1),tarsal platform show(TPS)and eyebrow fat span(BFS).A t-test was used to evaluate MRD1,TPS and BFS asymmetry by calculating delta values.The Bézier curve tool of the Image J software was used to extract the upper eyelid contours,where the symmetry was measured by the percentage of overlapping curvatures(POC).RESULTS:Totally 105 patients(105 eyelids)were included(mild group,n=84;moderate group,n=21).Postoperatively,all patients increased MRD1 and decreased TPS in the ptotic eye while maintaining unchanged BFS.The asymmetric delta value for MRD1 was measured to be 1.48±0.86 preoperatively,and it decreased to 0.58±0.67 postoperatively in all cases(P=0.0004).In patients with mild ptosis,the asymmetry value of TPS fell significantly from 1.15±0.62 to 0.68±0.38(P=0.0187).The symmetry of the upper eyelid contour increased in all subgroups of patients,with a POC of 59.39%±13.45%preoperatively and POC of 78.29%±13.80%postoperatively.CONCLUSION:Minimally invasive CFS suspension is proved to be an effective means of improving the symmetry of unilateral ptosis in terms of MRD1(all subgroups),POC(all subgroups)and TPS(only mild group),whereas BFS is unaffected.展开更多
By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)...By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.展开更多
The national independent innovation demonstration zone(NIIDZ)is an independent innovation policy that plays a crucial role in implementing strategies.Given the importance of the NIIDZ,this study uses panel data of 278...The national independent innovation demonstration zone(NIIDZ)is an independent innovation policy that plays a crucial role in implementing strategies.Given the importance of the NIIDZ,this study uses panel data of 278 prefecture-level cities in China from 2006 to 2020 and empirically examines the effect and internal mechanism of the NIIDZ on green economic efficiency(GEE)using the difference-in-difference model(DID).The results show that the NIIDZ effectively enhances the growth of GEE,and the results remain valid through several robustness tests,such as year-by-year propensity score matching.The transmission mechanism suggests that the NIIDZ indirectly drives GEE by accelerating scientific and technological investment,promoting talent concentration,and optimizing the industrial structure.Moreover,heterogeneity analysis reveals that the promotion effect of the NIIDZ on GEE is more prominent in the eastern region and high green development level areas.The study’s findings can serve as a reference for China to further utilize the policy effectiveness of the NIIDZ and accelerate the high-quality development of the green economy in the future.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force...Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force,the hydrostatic supporting effect is increased,and the real-time coupling of magnetic and liquid supporting can be realized.However,due to the high rotation speed,the rotor part produces eddy current loss,resulting in a large temperature rise and large ther-mal deformation,which makes the oil film thickness deviate from the initial design.The support and bearing characteristics are seriously affected.Therefore,this paper intends to explore the internal effects of eddy current loss of the rotor on the temperature rise and thermal deformation of MLDSB.Firstly,the 2D magnetic flow coupling mathematical model of MLDSB is established,and the eddy current loss distribution characteristics of the rotor are numerically simulated by Maxwell software.Secondly,the internal influence of mapping relationship of structural operating parameters such as input current,coil turns and rotor speed on rotor eddy current loss is revealed,and the changing trend of rotor eddy current loss under different design parameters is explored.Thirdly,the eddy cur-rent loss is loaded into the heat transfer finite element calculation model as a heat source,and the temperature rise of the rotor and its thermal deformation are simulated and analyzed,and the influ-ence of eddy current loss on rotor temperature rise and thermal deformation is revealed.Finally,the pressure-flow curve and the distribution law of the internal flow field are tested by the particle image velocimetry(PIV)system.The results show that eddy current loss increases linearly with the in-crease of coil current,coil turns and rotor speed.The effect of rotational speed on eddy current loss is much higher than that of coil current and coil turns.The maximum temperature rise,minimum temperature rise and maximum thermal deformation of the rotor increase with the increase of eddy current loss.The test results of flow-pressure and internal trace curves are basically consistent with the theoretical simulation,which effectively verifies the correctness of the theoretical simulation.The research results can provide theoretical basis for the design and safe and stable operation of magnetic fluid double suspension bearings.展开更多
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b...Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
文摘Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.
基金This work was supported by National Natural Science Foundation of China(No.12075304)Natural Science Foundation of Shanghai(No.22ZR1442100)National Key Research and Development Program of China(No.2022YFB3503904).
文摘X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
基金supported by the National SKA Program of China (2022SKA0130100)the National Natural Science Foundation of China (Grant Nos. 12373053, 12321003, and 12041306)+4 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBSLY-7014)the International Partnership Program of Chinese Academy of Sciences for Grand Challenges (Grant No. 114332KYSB20210018)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-063)the CAS Organizational Scientific Research Platform for National Major Scientific and Technological Infrastructure: Cosmic Transients with FASTthe Natural Science Foundation of Jiangsu Province (Grant No. BK20221562)。
文摘A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed distance. The dispersion measure and redshift measurements of fast radio bursts(FRBs) have been widely used to constrain the rest mass of the photon. However, all current studies analyzed the effect of the frequency-dependent dispersion for massive photons in the standard ΛCDM cosmological context. In order to alleviate the circularity problem induced by the presumption of a specific cosmological model based on the fundamental postulate of the masslessness of photons, here we employ a new model-independent smoothing technique, artificial neural network(ANN), to reconstruct the Hubble parameter H(z) function from 34 cosmic-chronometer measurements.By combining observations of 32 well-localized FRBs and the H(z) function reconstructed by ANN, we obtain an upper limit of m_(γ) ≤ 3.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 2.0 × 10^(-15)eV/c^(2)(m_(γ) ≤ 6.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 3.6 × 10^(-15)eV/c_(2)) at the 1σ(2σ) confidence level. This is the first cosmology-independent photon mass limit derived from extragalactic sources.
基金the National Natural Science Foundation of China(Grant Numbers 52072157,52002156,52202471)Natural Science Foundation of Jiangsu Province(Grant Number BK20200911)+2 种基金Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund(Grant Number CKLURVIOM_KFKT_2023001)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant Number 2022ZB659)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Hunan University(Grant Number 82315004).
文摘This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.
基金Supported by National Natural Science Foundation of China (Grant No.51875256)Open Platform Fund of Human Institute of Technology (Grant No.KFA22009)。
文摘Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.
基金Project(52022019)supported by the National Natural Science Foundation of China。
文摘The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.
基金This work is supported by the National Natural Science Foundation of China(62262016,61961160706,62231010)14th Five-Year Plan Civil Aerospace Technology Preliminary Research Project(D040405)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411212201).
文摘When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.
基金supported by the Imperial College Research Fellowship(ICRF 2022-2026)。
文摘Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles.
基金financially supported by the National Natural Science Foundation of China(No.51974018the Open Foundation of the State Key Laboratory of Process Automation in Mining and Metallurgy(No.BGRIMM-KZSKL-2022-9).
文摘Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金supported in part by the Fundamental Research Funds for the Central Universities(2572019BB03 and 2572021CG01)the Startup Fund and the Catalyst Fund from Rowan University and the Research Grant(PC 20-22)from the New Jersey Health Foundation from USAthe Grant(DMR-2116353)from the National Science Foundation.
文摘The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials.High-crystalline,high-aspect ratio,and slender nanofibrillated cellulose(NFC)were extracted from four biomass resources.The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions.The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli.As the concentration increased,the storage and loss modulus of NFC dispersion increased.When the shear rate increased to a certain value,there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived from different biomass resources and the suspensions with different solid concentrations.NFC dispersion’s storage and loss modulus increased when the temperature rose to nearly 80℃.We hope this study can deepen the understanding of the rheological properties of NFC colloids derived from different biomass resources.
基金partly funded by the Department of Science and Technology Fund for Improvement of S&T Infrastructure (Grant No. SR/FST/LS-I/2018/125)。
文摘Tissue culture techniques were used to produce large amounts of bioactive compounds with medicinal potential, overcoming space and time constraints for cancer prevention. Rice callus suspension cultures(RCSC) and seed extracts prepared from aromatic rice varieties were used to evaluate the cytotoxic impact on human colon and lung cancer cell lines, as well as a normal control cell line, using Taxol as a positive control. RCSC and seed extracts from two Indian aromatic rice varieties were applied at different concentrations to treat the cancer cell lines and normal lung fibroblasts over varying time intervals. Apoptosis was assessed in 1:5 dilutions of the A549 and HT-29 cell lines treated with RCSC for 72 h, using propidium iodide staining and flow cytometry. RCSC showed a more potent cytotoxic effect than seed extracts with minimal effect on the normal cell line, in contrast to Taxol. Confocal microscopy and flow cytometry further confirmed the apoptotic effect of RCSC. Gas chromatography-mass spectrometry-based metabolic profiling identified metabolites involved in cytotoxicity and highlighted altered pathways. RCSC is proposed as an alternative source for the development of novel anticancer drugs with reduced side effects.
基金Supported by Tianjin Key Medical Discipline Construction Project(No.TJYXZDXK-016A).
文摘AIM:To investigate the symmetry of upper eyelid in patients with unilateral mild and moderate blepharoptosis who underwent unilateral minimally invasive combined fascia sheath(CFS)suspension.METHODS:A retrospective study of patients who underwent unilateral minimally invasive CFS suspension surgery between January 2018 and December 2021.Inclusion criteria included unilateral mild and moderate ptosis,good levator muscle function(>9 mm)and follow-up of at least 6mo.Pre-and post-operative symmetry was graded subjectively for marginal reflex distance 1(MRD1),tarsal platform show(TPS)and eyebrow fat span(BFS).A t-test was used to evaluate MRD1,TPS and BFS asymmetry by calculating delta values.The Bézier curve tool of the Image J software was used to extract the upper eyelid contours,where the symmetry was measured by the percentage of overlapping curvatures(POC).RESULTS:Totally 105 patients(105 eyelids)were included(mild group,n=84;moderate group,n=21).Postoperatively,all patients increased MRD1 and decreased TPS in the ptotic eye while maintaining unchanged BFS.The asymmetric delta value for MRD1 was measured to be 1.48±0.86 preoperatively,and it decreased to 0.58±0.67 postoperatively in all cases(P=0.0004).In patients with mild ptosis,the asymmetry value of TPS fell significantly from 1.15±0.62 to 0.68±0.38(P=0.0187).The symmetry of the upper eyelid contour increased in all subgroups of patients,with a POC of 59.39%±13.45%preoperatively and POC of 78.29%±13.80%postoperatively.CONCLUSION:Minimally invasive CFS suspension is proved to be an effective means of improving the symmetry of unilateral ptosis in terms of MRD1(all subgroups),POC(all subgroups)and TPS(only mild group),whereas BFS is unaffected.
基金Support for this study was received from Orient Resources Ltd.in Canada,Wuhan Institute of Technology,China,and College of Earth Sciences,Jilin University,China.
文摘By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma.
基金supported by the National Natural Science Foundation of China[Grant No.72163018]the Yunnan College Students’Innovation and Entrepreneurship Training Program[Grant No.S202310674173]the Yunnan Province Basic Research Program General Project[Grant No.202401AT070393].
文摘The national independent innovation demonstration zone(NIIDZ)is an independent innovation policy that plays a crucial role in implementing strategies.Given the importance of the NIIDZ,this study uses panel data of 278 prefecture-level cities in China from 2006 to 2020 and empirically examines the effect and internal mechanism of the NIIDZ on green economic efficiency(GEE)using the difference-in-difference model(DID).The results show that the NIIDZ effectively enhances the growth of GEE,and the results remain valid through several robustness tests,such as year-by-year propensity score matching.The transmission mechanism suggests that the NIIDZ indirectly drives GEE by accelerating scientific and technological investment,promoting talent concentration,and optimizing the industrial structure.Moreover,heterogeneity analysis reveals that the promotion effect of the NIIDZ on GEE is more prominent in the eastern region and high green development level areas.The study’s findings can serve as a reference for China to further utilize the policy effectiveness of the NIIDZ and accelerate the high-quality development of the green economy in the future.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金the Natural Science Foundation of Hebei Province(No.E2020203052)the S&T Program of Hebei(No.236Z1901G).
文摘Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force,the hydrostatic supporting effect is increased,and the real-time coupling of magnetic and liquid supporting can be realized.However,due to the high rotation speed,the rotor part produces eddy current loss,resulting in a large temperature rise and large ther-mal deformation,which makes the oil film thickness deviate from the initial design.The support and bearing characteristics are seriously affected.Therefore,this paper intends to explore the internal effects of eddy current loss of the rotor on the temperature rise and thermal deformation of MLDSB.Firstly,the 2D magnetic flow coupling mathematical model of MLDSB is established,and the eddy current loss distribution characteristics of the rotor are numerically simulated by Maxwell software.Secondly,the internal influence of mapping relationship of structural operating parameters such as input current,coil turns and rotor speed on rotor eddy current loss is revealed,and the changing trend of rotor eddy current loss under different design parameters is explored.Thirdly,the eddy cur-rent loss is loaded into the heat transfer finite element calculation model as a heat source,and the temperature rise of the rotor and its thermal deformation are simulated and analyzed,and the influ-ence of eddy current loss on rotor temperature rise and thermal deformation is revealed.Finally,the pressure-flow curve and the distribution law of the internal flow field are tested by the particle image velocimetry(PIV)system.The results show that eddy current loss increases linearly with the in-crease of coil current,coil turns and rotor speed.The effect of rotational speed on eddy current loss is much higher than that of coil current and coil turns.The maximum temperature rise,minimum temperature rise and maximum thermal deformation of the rotor increase with the increase of eddy current loss.The test results of flow-pressure and internal trace curves are basically consistent with the theoretical simulation,which effectively verifies the correctness of the theoretical simulation.The research results can provide theoretical basis for the design and safe and stable operation of magnetic fluid double suspension bearings.
文摘Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects.