Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments re...Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.展开更多
This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality I...This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality Index (WQI). Water Quality Index (WQI) has been used to assess groundwater quality and Geographic Information Systems (GIS) has been used to create maps representing the spatial distribution of groundwater categories in Assiut governorate, Egypt. Water Quality Index has been computed by Un-weighted Arithmetic Water Quality Index (WQIUA) method and applied on 796 wells over eight years from 2006 to 2013. The results showed that WQIUA values for drinking purposes were high and most of them reached higher or close to 100, which indicated that the groundwater was polluted and unsafe for drinking. On the other hand, the quality index of groundwater for irrigation purposes in most of the study area ranges between 55.78 and 78.38 (poor and very poor category);this means that groundwater is moderately polluted and rather suitable for irrigation.展开更多
文摘Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.
文摘This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality Index (WQI). Water Quality Index (WQI) has been used to assess groundwater quality and Geographic Information Systems (GIS) has been used to create maps representing the spatial distribution of groundwater categories in Assiut governorate, Egypt. Water Quality Index has been computed by Un-weighted Arithmetic Water Quality Index (WQIUA) method and applied on 796 wells over eight years from 2006 to 2013. The results showed that WQIUA values for drinking purposes were high and most of them reached higher or close to 100, which indicated that the groundwater was polluted and unsafe for drinking. On the other hand, the quality index of groundwater for irrigation purposes in most of the study area ranges between 55.78 and 78.38 (poor and very poor category);this means that groundwater is moderately polluted and rather suitable for irrigation.