The biogenic silica of sediment samples from Core CJ01-185 which is collected from the eastern India Ocean off the Sunda Strait is analyzed to evaluate the impact of the opening of the Sunda Strait on a paleoproductiv...The biogenic silica of sediment samples from Core CJ01-185 which is collected from the eastern India Ocean off the Sunda Strait is analyzed to evaluate the impact of the opening of the Sunda Strait on a paleoproductivity evolution. The new results indicate that the biogenic silica mass values of Core CJ01-185 show the lowest 0.86% in the last glacial period, and reach its maxima of 1.89% in the late Holocene. Furthermore, the biogenic silica mass accumulation rate(MARBSi) values also vary with much higher during the late Holocene than during the last glaciation. The input of additional terrigenous materials from the Java Sea has enhanced the paleoproductivity and increased the biogenic silica mass and MARBSi values after the opening of the Sunda Strait. It is suggested that the paleoproductivity in the study area is mainly influenced by the southeast monsoon and upwelling before the opening of the Sunda Strait. However, the paleoproductivity is dominated by the terrigenous materials input other than by the southeast monsoon or upwelling in the Holocene.展开更多
Inter Tropical Convergence Zone (ITCZ) is one of the major systems in making the general circulation of atmosphere. Many climatologists believe that the starting point of the general circulation of atmosphere is from ...Inter Tropical Convergence Zone (ITCZ) is one of the major systems in making the general circulation of atmosphere. Many climatologists believe that the starting point of the general circulation of atmosphere is from this system. It seems that the annual displacement of this system is coordinated with the sun. In this study we have tried to investigate the annual and seasonal displacement of this system within the range of Middle East, especially within the range of longitude of Iran in a long period of time (statistical period of 66 years). This is the first study in the field of ITCZ monthly and annual long-term changes in Iran. In this study, not only his exact position on Africa and South West Asia ITCZ is determined, it also shows the change in the period of 66 years. These results can also be used on regional climate changes. For this purpose topographic and surface level pressure maps are 1000 and 850 hpa and they were approximately extracted monthly for 12 months of the year from 1948 to 2013 and also they were extracted from the National Oceanic and Atmospheric Ad-ministration Site in America within the range of 30°west to 110°east, and they were extracted by using the flow map of location (ITCZ). Due to the sudden displacement in the ITCZ bar path in the two seasons of summer and winter, on the Middle East region, the direct impact of this displacement on sudden changes of seasons, the start and end of untimely rains, its impacts on agricultural products and water recourses of the country so all these reasons are essential that this phenomenon should be studied carefully. Studies have shown that ITCZ is not a coordinated solar system and its displacement is not coordinate with the apparent annual displacement of the sun. October is the only month of ITCZ that within the range of 10 northern degrees in all the ranges of longitude 20°west to 110°east has an approximate orbital shape. In 6 months of the year (from November to April) (ITCZ) within the range of 30°east or 110°east, it is entirely located in the Southern Hemisphere and on the contrary in 5 months from May to September (ITCZ) within the range of 30°east to 110°east, it is entirely located in the Northern Hemisphere. And in this period, ITCZ has its highest Northern movement on the Earth. So that at the foot of the Himalayas it moves to 30°north. Within the range of Africa, ITCZ never enters the Southern Hemisphere at any time of the year. And the interesting phenomenon of severe refraction in the way of ITCZ, during the cold period, is within the range of Ethiopia and ITCZ has approximately redirected for Meridian and enters the Southern Hemisphere.展开更多
Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably mu...Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate's mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is de- laminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological period, causing some seismic velocity annmalies around those subduction zones.展开更多
The complexities in the relationship between winter monsoon rainfall (WMR) over South India and Sea Surface temperature (SST) variability in the southern and tropical Indian Ocean (STIO) are evaluated statistically. T...The complexities in the relationship between winter monsoon rainfall (WMR) over South India and Sea Surface temperature (SST) variability in the southern and tropical Indian Ocean (STIO) are evaluated statistically. The data of the time period of our study (1950-2003) have been divided exactly in two halves to identify predictors. Correlation analysis is done to see the effect of STIO SST variability on winter monsoon rainfall index (WMRI) for South India with a lead-lag of 8 seasons (two years). The significant positive correlation is found between Southern Indian Ocean (SIO) SST and WMRI in July-August-September season having a lag of one season. The SST of the SIO, Bay of Bengal and North Equatorial Indian Ocean are negatively correlated with WMRI at five, six and seven seasons before the onset of winter monsoon. The maximum positive correlation of 0.61 is found from the region south of 500 S having a lag of one season and the negative correlations of 0.60, 0.53 and 0.57 are found with the SST of the regions SIO, Bay of Bengal and North Equatorial Ocean having lags of five, six and seven seasons respectively and these correlation coefficients have confidence level of 99%. Based on the correlation analysis, we defined Antarctic Circumpolar Current Index A and B (ACCIA (A) & ACCIB (B)), Bay of Bengal index (BOBI (C)) and North Equatorial Index (NEI (D)) by averageing SST for the regions having maximum correlation (positive or negative) with WMRI index. These SST indices are used to predict the WMRI using linear and multivariate linear regression models. In addition, we also attempted to detect a dynamic link for the predictability of WMRI using Nino 3.4 index. The predictive skill of these indices is tested by error analysis and Willmott’s index.展开更多
Petrography, carbon and oxygen isotopic study was carried out to interpret isotopic variations on the predominant carbonate sequence of the Dalmiapuram Formation of the Cauvery Basin, South India. The common petrograp...Petrography, carbon and oxygen isotopic study was carried out to interpret isotopic variations on the predominant carbonate sequence of the Dalmiapuram Formation of the Cauvery Basin, South India. The common petrographic types identified in the Dalmiapuram Formation range from wackestone to boundstone. The gray shale and limestone members show large variations in d13 C and d18 O values(Gray shale member: +1.44 to +2.40 %VPDB,-3.05 to-5.92 % VPDB, respectively; Limestone member:-6.07 to +2.93 % VPDB;-7.08 to-0.39 %VPDB; respectively). In the present study, the carbon and oxygen values are not correlated, which supports the fact that these limestones retain their primary isotopic signatures. In carbon isotope curve, one negative shift is identified in the gray shale member and a positive isotopic excursion is detected in the coral algal limestone(CAL).The observed positive isotopic excursion in the lower part of the CAL correlates with OAE1 d and suggests the global nature of the late Albian OAE1 d in the Cauvery Basin.展开更多
本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WR...本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WRF),对2019年7月8日南大西洋上空的“射线状”云个例进行了水平分辨率为1 km的模拟研究,分析了云凝结核浓度、气温、垂直运动速度、水汽混合比的垂直结构和水汽的水平分布。研究结论显示:“射线状”云是一种主要发生在低纬度地区的中尺度天气现象,且就大西洋和印度洋海域而言,多发生于南半球大洋上空,北半球夏季和秋季是“射线状”云的频发季节;每个“射线状”云臂单体出现处均对应有不同程度的上升运动,“射线状”云是具有对流性质的云;大气逆温层会限制云向高处发展,使得水汽被限制在逆温层高度以下,大范围的逆温层是塑造“射线状”云形态的重要因素。展开更多
基金The National Programme on Global Change and Air-sea Interaction under contract Nos GASI-GEOGE-06-03 and GASI-02-IND-CJ01the China-Indonesia Joint Project under contract No."BENTHIC"the Third Institute of Oceanography,Ministry of Natural Resources Research Grant under contract No.2015015
文摘The biogenic silica of sediment samples from Core CJ01-185 which is collected from the eastern India Ocean off the Sunda Strait is analyzed to evaluate the impact of the opening of the Sunda Strait on a paleoproductivity evolution. The new results indicate that the biogenic silica mass values of Core CJ01-185 show the lowest 0.86% in the last glacial period, and reach its maxima of 1.89% in the late Holocene. Furthermore, the biogenic silica mass accumulation rate(MARBSi) values also vary with much higher during the late Holocene than during the last glaciation. The input of additional terrigenous materials from the Java Sea has enhanced the paleoproductivity and increased the biogenic silica mass and MARBSi values after the opening of the Sunda Strait. It is suggested that the paleoproductivity in the study area is mainly influenced by the southeast monsoon and upwelling before the opening of the Sunda Strait. However, the paleoproductivity is dominated by the terrigenous materials input other than by the southeast monsoon or upwelling in the Holocene.
文摘Inter Tropical Convergence Zone (ITCZ) is one of the major systems in making the general circulation of atmosphere. Many climatologists believe that the starting point of the general circulation of atmosphere is from this system. It seems that the annual displacement of this system is coordinated with the sun. In this study we have tried to investigate the annual and seasonal displacement of this system within the range of Middle East, especially within the range of longitude of Iran in a long period of time (statistical period of 66 years). This is the first study in the field of ITCZ monthly and annual long-term changes in Iran. In this study, not only his exact position on Africa and South West Asia ITCZ is determined, it also shows the change in the period of 66 years. These results can also be used on regional climate changes. For this purpose topographic and surface level pressure maps are 1000 and 850 hpa and they were approximately extracted monthly for 12 months of the year from 1948 to 2013 and also they were extracted from the National Oceanic and Atmospheric Ad-ministration Site in America within the range of 30°west to 110°east, and they were extracted by using the flow map of location (ITCZ). Due to the sudden displacement in the ITCZ bar path in the two seasons of summer and winter, on the Middle East region, the direct impact of this displacement on sudden changes of seasons, the start and end of untimely rains, its impacts on agricultural products and water recourses of the country so all these reasons are essential that this phenomenon should be studied carefully. Studies have shown that ITCZ is not a coordinated solar system and its displacement is not coordinate with the apparent annual displacement of the sun. October is the only month of ITCZ that within the range of 10 northern degrees in all the ranges of longitude 20°west to 110°east has an approximate orbital shape. In 6 months of the year (from November to April) (ITCZ) within the range of 30°east or 110°east, it is entirely located in the Southern Hemisphere and on the contrary in 5 months from May to September (ITCZ) within the range of 30°east to 110°east, it is entirely located in the Northern Hemisphere. And in this period, ITCZ has its highest Northern movement on the Earth. So that at the foot of the Himalayas it moves to 30°north. Within the range of Africa, ITCZ never enters the Southern Hemisphere at any time of the year. And the interesting phenomenon of severe refraction in the way of ITCZ, during the cold period, is within the range of Ethiopia and ITCZ has approximately redirected for Meridian and enters the Southern Hemisphere.
基金National Natural Science Foundation of China (49374207 and 49974021).
文摘Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate's mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is de- laminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological period, causing some seismic velocity annmalies around those subduction zones.
文摘The complexities in the relationship between winter monsoon rainfall (WMR) over South India and Sea Surface temperature (SST) variability in the southern and tropical Indian Ocean (STIO) are evaluated statistically. The data of the time period of our study (1950-2003) have been divided exactly in two halves to identify predictors. Correlation analysis is done to see the effect of STIO SST variability on winter monsoon rainfall index (WMRI) for South India with a lead-lag of 8 seasons (two years). The significant positive correlation is found between Southern Indian Ocean (SIO) SST and WMRI in July-August-September season having a lag of one season. The SST of the SIO, Bay of Bengal and North Equatorial Indian Ocean are negatively correlated with WMRI at five, six and seven seasons before the onset of winter monsoon. The maximum positive correlation of 0.61 is found from the region south of 500 S having a lag of one season and the negative correlations of 0.60, 0.53 and 0.57 are found with the SST of the regions SIO, Bay of Bengal and North Equatorial Ocean having lags of five, six and seven seasons respectively and these correlation coefficients have confidence level of 99%. Based on the correlation analysis, we defined Antarctic Circumpolar Current Index A and B (ACCIA (A) & ACCIB (B)), Bay of Bengal index (BOBI (C)) and North Equatorial Index (NEI (D)) by averageing SST for the regions having maximum correlation (positive or negative) with WMRI index. These SST indices are used to predict the WMRI using linear and multivariate linear regression models. In addition, we also attempted to detect a dynamic link for the predictability of WMRI using Nino 3.4 index. The predictive skill of these indices is tested by error analysis and Willmott’s index.
基金supported by DGAPA, Universidad Nacional Autónoma de Mexico through the PASPA Project
文摘Petrography, carbon and oxygen isotopic study was carried out to interpret isotopic variations on the predominant carbonate sequence of the Dalmiapuram Formation of the Cauvery Basin, South India. The common petrographic types identified in the Dalmiapuram Formation range from wackestone to boundstone. The gray shale and limestone members show large variations in d13 C and d18 O values(Gray shale member: +1.44 to +2.40 %VPDB,-3.05 to-5.92 % VPDB, respectively; Limestone member:-6.07 to +2.93 % VPDB;-7.08 to-0.39 %VPDB; respectively). In the present study, the carbon and oxygen values are not correlated, which supports the fact that these limestones retain their primary isotopic signatures. In carbon isotope curve, one negative shift is identified in the gray shale member and a positive isotopic excursion is detected in the coral algal limestone(CAL).The observed positive isotopic excursion in the lower part of the CAL correlates with OAE1 d and suggests the global nature of the late Albian OAE1 d in the Cauvery Basin.
文摘本文利用中分辨率成像光谱仪(MODIS)、可见光/红外辐射成像仪(VIIRS)可见光卫星云图,对2017—2021年发生在大西洋和印度洋上的118个“射线状”云个例进行了统计分析,利用天气研究和预报模式(Weather research and forecasting model, WRF),对2019年7月8日南大西洋上空的“射线状”云个例进行了水平分辨率为1 km的模拟研究,分析了云凝结核浓度、气温、垂直运动速度、水汽混合比的垂直结构和水汽的水平分布。研究结论显示:“射线状”云是一种主要发生在低纬度地区的中尺度天气现象,且就大西洋和印度洋海域而言,多发生于南半球大洋上空,北半球夏季和秋季是“射线状”云的频发季节;每个“射线状”云臂单体出现处均对应有不同程度的上升运动,“射线状”云是具有对流性质的云;大气逆温层会限制云向高处发展,使得水汽被限制在逆温层高度以下,大范围的逆温层是塑造“射线状”云形态的重要因素。