The relationship between the all-India summer monsoon rainfall and surface pressure over the Indian region has been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India monsoon ...The relationship between the all-India summer monsoon rainfall and surface pressure over the Indian region has been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India monsoon rainfall and the mean pressures of three seasons before and after the monsoon season as well as the winter-to-spring pressure tendency (MAM-DJF) at 100 stations for the period 1951-1980 have been used in the analysis.The all-India monsoon rainfall is negatively correlated with the pressure of the spring (MAM) season preceding the monsoon and winter-to-spring seasonal difference as pressure tendency (MAM-DJF), at almost all the stations in India, and significantly with the pressures over central and northwestern regions. The average mean sea level pressure of six stations (Jodhpur, Ahmedabed, Bombay, Indore, Sagar and Akola) in the Western Central Indian (WCI) region showed highly significant (at 1% level) and consistent CCs of-0.63 for MAM and -0.56 for MAM-DJF for the period 1951 - 1980. Thus, the pre-monsoon seasonal pressure anomalies over WCI could provide a useful parameter for the long-range forecasting scheme of the Indian monsoon rainfall.展开更多
The South Asian summer monsoon(SASM) precipitation is analyzed based on reanalysis datasets and historical simulation results from 23 climate models of the Coupled Model Intercomparison Project phase 5(CMIP5). The...The South Asian summer monsoon(SASM) precipitation is analyzed based on reanalysis datasets and historical simulation results from 23 climate models of the Coupled Model Intercomparison Project phase 5(CMIP5). The results show that most models reproduce well the climatological pattern of SASM precipitation, but the main rainfall period lags that of the reanalysis by one month. The relationship between the simulated SASM precipitation and sea surface temperature anomalies(SSTAs) is quite similar to the reanalysis data. This is attributed to the well-reproduced Walker cell anomaly in the tropical zone. It is projected that the negative correlation between SASM precipitation and SSTAs in the eastern equatorial Pacific will weaken and even reverse to a positive one in the period 2070–2096 under the representative concentration pathway(RCP) scenario with strong external forcing(RCP8.5), while the change of the correlation under moderate forcing(RCP4.5) still has great uncertainty.展开更多
The multi-yearly averaged pentad meteorological fields at 850 hPa of theNCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 areanalyzed. It is found that if the pentad is t...The multi-yearly averaged pentad meteorological fields at 850 hPa of theNCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 areanalyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then thetropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the wholearea in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), eastof 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later inthe India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the southend of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the wholearea, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of thesurface sensible heat flux, air temperature, and pressure in spring and early summer in the middleto high latitudes of the East Asian continent between 100°E and 120°E are crucially responsiblefor the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes thatinduce a continental depression to form and break through the high system of pressure originallylocated in the above continental areas. The low depression in turn introduces the southwesterly tocome into the BOB to the SCS areas, east of 90° E, and thus makes the SCS summer monsoon (SCSSM)burst out earliest in Asia. In the IP to the AS areas, west of 90° E, the surface sensible heatflux almost does not experience obvious change during April and May, which makes the tropical Indiansummer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded thatthe meridian of 90° E is the demarcation line between the South Asian summer monsoon (SASM, i.e.,the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporalrelations between the TASM onset and the seasonal variation of the South Asian high (SAH) arediscussed, too, and it is found that there are good relations between the monsoon onset time and theSAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and tonorth of 25° N, the TISM onsets at its south end. Comparison between the onset time such determinedand that with other methodologies shows fair consistency in the SCS area and some differences inthe IP area.展开更多
XRF岩芯连续扫描在近30年间被广泛用于获取不同地理环境的湖泊沉积序列元素分布及其指示的环境意义,特别是湖泊密集的“亚洲水塔”青藏高原。然而,XRF扫描数据的准确性受沉积岩芯物理属性的显著影响,可能导致记录信息的过度或错误解释...XRF岩芯连续扫描在近30年间被广泛用于获取不同地理环境的湖泊沉积序列元素分布及其指示的环境意义,特别是湖泊密集的“亚洲水塔”青藏高原。然而,XRF扫描数据的准确性受沉积岩芯物理属性的显著影响,可能导致记录信息的过度或错误解释。本研究基于青藏高原南部哲古错(ZGC)内近4400年以来由植物和泥沙混合沉积而成的2.16 m完整岩芯(ZGC21),利用XRF岩芯连续扫描获取其元素信号值和色度分布,结合含水量、粒度、烧失量等物理特征分析,表明ZGC岩芯层理清晰、定年精准、气候信息记录全面,是重建印度夏季风和青藏高原南部气候变化的最佳载体之一。稳定元素(Al、 K、 Fe、 Mn、 Rb、 Si、 Ti、 Zr)信号值分布均不能用于指示ZGC岩芯不同层理的碎屑物质输入比例,但Zr/Rb比值则可反映流域内物质输入的真实特征;Ca和Br元素信号值分布分别指示ZGC21岩芯的碳酸盐和有机质含量变化。基于可靠元素信号分布和AMS-14C精确定年,青藏高原南部在太阳辐射强度变化驱动下于4400~3500 a B. P.和850~80 a B. P.年间均处于寒冷气候环境中,低温不足以支撑湖内植被的生存,而在2750~1830 a B. P.和1320~850 a B. P.年间则相反。上述结果为XRF岩芯连续扫描数据的正确应用和准确解释提供科学示范,也为重建该地区过去4400年人地关系提供年代际尺度环境演变框架。展开更多
文摘The relationship between the all-India summer monsoon rainfall and surface pressure over the Indian region has been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India monsoon rainfall and the mean pressures of three seasons before and after the monsoon season as well as the winter-to-spring pressure tendency (MAM-DJF) at 100 stations for the period 1951-1980 have been used in the analysis.The all-India monsoon rainfall is negatively correlated with the pressure of the spring (MAM) season preceding the monsoon and winter-to-spring seasonal difference as pressure tendency (MAM-DJF), at almost all the stations in India, and significantly with the pressures over central and northwestern regions. The average mean sea level pressure of six stations (Jodhpur, Ahmedabed, Bombay, Indore, Sagar and Akola) in the Western Central Indian (WCI) region showed highly significant (at 1% level) and consistent CCs of-0.63 for MAM and -0.56 for MAM-DJF for the period 1951 - 1980. Thus, the pre-monsoon seasonal pressure anomalies over WCI could provide a useful parameter for the long-range forecasting scheme of the Indian monsoon rainfall.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2010CB950503)West Light Foundation of the Chinese Academy of Sciences(Y229D21001)National Natural Science Foundation of China(41130961)
文摘The South Asian summer monsoon(SASM) precipitation is analyzed based on reanalysis datasets and historical simulation results from 23 climate models of the Coupled Model Intercomparison Project phase 5(CMIP5). The results show that most models reproduce well the climatological pattern of SASM precipitation, but the main rainfall period lags that of the reanalysis by one month. The relationship between the simulated SASM precipitation and sea surface temperature anomalies(SSTAs) is quite similar to the reanalysis data. This is attributed to the well-reproduced Walker cell anomaly in the tropical zone. It is projected that the negative correlation between SASM precipitation and SSTAs in the eastern equatorial Pacific will weaken and even reverse to a positive one in the period 2070–2096 under the representative concentration pathway(RCP) scenario with strong external forcing(RCP8.5), while the change of the correlation under moderate forcing(RCP4.5) still has great uncertainty.
基金Sponsored by the NSFC Key Project under No. 40233037the "National Key Developing Programme for Basic Science" project under No. 2004CB418300.
文摘The multi-yearly averaged pentad meteorological fields at 850 hPa of theNCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 areanalyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then thetropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the wholearea in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), eastof 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later inthe India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the southend of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the wholearea, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of thesurface sensible heat flux, air temperature, and pressure in spring and early summer in the middleto high latitudes of the East Asian continent between 100°E and 120°E are crucially responsiblefor the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes thatinduce a continental depression to form and break through the high system of pressure originallylocated in the above continental areas. The low depression in turn introduces the southwesterly tocome into the BOB to the SCS areas, east of 90° E, and thus makes the SCS summer monsoon (SCSSM)burst out earliest in Asia. In the IP to the AS areas, west of 90° E, the surface sensible heatflux almost does not experience obvious change during April and May, which makes the tropical Indiansummer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded thatthe meridian of 90° E is the demarcation line between the South Asian summer monsoon (SASM, i.e.,the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporalrelations between the TASM onset and the seasonal variation of the South Asian high (SAH) arediscussed, too, and it is found that there are good relations between the monsoon onset time and theSAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and tonorth of 25° N, the TISM onsets at its south end. Comparison between the onset time such determinedand that with other methodologies shows fair consistency in the SCS area and some differences inthe IP area.
文摘XRF岩芯连续扫描在近30年间被广泛用于获取不同地理环境的湖泊沉积序列元素分布及其指示的环境意义,特别是湖泊密集的“亚洲水塔”青藏高原。然而,XRF扫描数据的准确性受沉积岩芯物理属性的显著影响,可能导致记录信息的过度或错误解释。本研究基于青藏高原南部哲古错(ZGC)内近4400年以来由植物和泥沙混合沉积而成的2.16 m完整岩芯(ZGC21),利用XRF岩芯连续扫描获取其元素信号值和色度分布,结合含水量、粒度、烧失量等物理特征分析,表明ZGC岩芯层理清晰、定年精准、气候信息记录全面,是重建印度夏季风和青藏高原南部气候变化的最佳载体之一。稳定元素(Al、 K、 Fe、 Mn、 Rb、 Si、 Ti、 Zr)信号值分布均不能用于指示ZGC岩芯不同层理的碎屑物质输入比例,但Zr/Rb比值则可反映流域内物质输入的真实特征;Ca和Br元素信号值分布分别指示ZGC21岩芯的碳酸盐和有机质含量变化。基于可靠元素信号分布和AMS-14C精确定年,青藏高原南部在太阳辐射强度变化驱动下于4400~3500 a B. P.和850~80 a B. P.年间均处于寒冷气候环境中,低温不足以支撑湖内植被的生存,而在2750~1830 a B. P.和1320~850 a B. P.年间则相反。上述结果为XRF岩芯连续扫描数据的正确应用和准确解释提供科学示范,也为重建该地区过去4400年人地关系提供年代际尺度环境演变框架。