The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotop...The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ.展开更多
The basement granite gneisses from the north-central Aravalli Craton in NW India were investigated for geochemistry and geochronology.In a peneplain terrain,the granite gneiss outcrops are scanty and samples were coll...The basement granite gneisses from the north-central Aravalli Craton in NW India were investigated for geochemistry and geochronology.In a peneplain terrain,the granite gneiss outcrops are scanty and samples were collected mainly from two small hills and several ground-level exposures in the Sakhun–Ladera region.Wellfoliated granite gneiss is the dominant lithology that also hosts dark,lenticular enclaves,and is in turn,intruded by mafic dykes.The granite gneiss has silica content ranging from 61.37 wt.%to 68.27 wt.%that marks a slight overlap with the enclaves(54.32wt.%to 62.17wt.%).Both groups have a highK2O/Na2O(~2 or higher)ratio.Geochemically,the granite gneiss classify as granite–granodiorite,and enclaves as granodiorite-diorite.The In-situ LA-ICP-MS zircon U–Pb geochronology of granite gneiss has yielded a statistically valid 1721±9 Ma age that we interpret as the emplacement age for the granitic protolith.Geochemical characteristics of granite gneiss underline fractional crystallization of an I-type melt as themain process,and continuity of trends in enclaves underlines their mutual genetic link.The genetic association is further verified by a consistency in the trace element characteristics and REE patterns.The Nd-isotope signatures define a single grouping for both granite gneiss and enclaves,withεNd(t)values ranging from−6.38 to−6.61,further substantiating a common source.The geochemical tectonic discrimination schemes consistently point toward an extensional setting and A-type characteristics for granite gneiss and enclaves.These are analogous to the coeval(1.72–1.75 Ga),A-type granitoids from the Khetri and Alwar basin in the North Delhi Fold Belt,implying a much larger areal extent for the Paleoproterozoic anorogenic magmatism in the northern segment of the Aravalli Craton.The Paleoproterozoic age for the presumed‘Archean’basement in this region offers tacit evidence that the BGC–II is a stratigraphically younger terrane as compared to the Archean age,BGC–I.展开更多
Mesoproterozoic North Delhi fold belt of NW Indian shield comprises three volcano-sedimentary basins viz. Bayana, Alwar and Khetri aligned parallel to each other from east to west. Each basin contains excellent exposu...Mesoproterozoic North Delhi fold belt of NW Indian shield comprises three volcano-sedimentary basins viz. Bayana, Alwar and Khetri aligned parallel to each other from east to west. Each basin contains excellent exposures of mafic volcanic rocks. Major, trace and rare earth element abundances of volcanic rocks of the three basins are significantly diverse. Bayana and Alwar volcanics are tholeiites bearing close similarity with low Ticontinental flood basalts. However, Bayana volcanics are characteristically enriched in incompatible trace elements and REEs while Alwar volcanics display least enriched incompatible trace element abundances and flat REE patterns. The Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. REE based source modeling suggests that Bayana suite was formed from the melts derived from 1 % to 10 %(avg.4 %) of the partial melting of a spinel lherzolite source giving a residual mineralogy of 56 % Olv, 25 % Opx and19 % Cpx. Whereas Alwar suite evolved through 12 %–20 %(avg. 15 %) partial melting of the same source with a residual mineralogy 61 % Olv, 25 % Opx and 14 % Cpx.Khetri volcanics are exposed at two localities Kolihan and Madhan–Kudhan. The Kolihan volcanics were derived from 1 % to 6 %(avg. 4 %) partial melting with residualmineralogy 56 % Olv, 25 % Opx and 19 % Cpx whereas the magma of Madhan Kudhan volcanic suite was generated by 15%–30 % partial melting of the same source leaving behind 64 % Olv, 25 % Opx and 11 % Cpx as residual mineralogy. This source modeling proves that melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field under the influence of mantle plume. During the course of ascent, Bayana melts were crustally contaminated but Alwar melts remained unaffected. There was two tier magma production in Khetri region, one from the partial melting of the mantle wedge overlying the subducted oceanic plate which formed Kolihan suite and two the melting of the subducted plate itself generating Madhan–Kudhan volcanics. It is interpreted that during Mesoproterozoic(1,800 Ma), the continental lithosphere of NW Indian shield suffered stretching, attenuation and fracturing in response to a rising plume. Consequently, differential crustal extension coupled with variable attenuation brought the asthenosphere to shallower setting which led to the production of tholeiitic melts. These melts enroute to the surface suffered variable lithospheric contamination depending upon the thickness of traversed crust. The Khetri basin attained maturity which resulted in the generation of true oceanic crust and its subsequent destruction through subduction. The spatial existence of three suites of mafic volcanics of diverse chemical signatures is best example of subduction–plume interaction. It is therefore, proposed that the Mesoproterozoic crust of NW Indian shield has evolved through the operation of a complete Wilson cycle at about1,832 Ma, the age of mafic volcanics of Khetri basin.展开更多
Granitoids and orthogneisses(1.7 Ga)from the northern part of the Banded Gneissic Complex(BGC-II domain),Aravalli Craton(NW India)are geochemically analyzed to understand the geodynamic condition and crustal evolution...Granitoids and orthogneisses(1.7 Ga)from the northern part of the Banded Gneissic Complex(BGC-II domain),Aravalli Craton(NW India)are geochemically analyzed to understand the geodynamic condition and crustal evolution processes.The samples are metaluminous to peraluminous(molar A/CNK:0.74±2.12),and characterized by Eu-anomaly ranging from 0.17 to 1.06,Fe_(2)O_(3)^(T)/(Fe_(2)O_(3)^(T)+MgO)from 0.8 to 0.9 and high magmatic zircon saturation temperature(>830°C)which are the features suggestive of A-type granite affinity.Tectonic discrimination diagrams classify the samples as post-collisional extensional A2-type granites.Geochemical characteristics along with trace element ratios[(Y/Nb)_(N)=0.15 to 4.33(avg.0.76),(Th/Nb)_(N)=4.63 to 255.47(avg.63.13),(Th/Ta)_(N)=1.37 to 9.84(avg.8.86),(Ce/Pb)_(N)=0.05 to 3.05(avg.1.43)]indicate that the rocks were derived from a plagioclase-rich and garnet-free crustal source under lowpressure conditions.Further,it is also proposed that tonalite-trondhjemite-granodiorite(TTG)rocks which occur dominantly in southern Rajasthan(BGC-I)are precursors and their partial melting led to the generation of the studied A-type granite samples.The studied samples also bear close geochemical similarity with A-type granites of similar age(1.7 Ga)near the Sakhun-Ladera region of northern BGC-II.The studied A-type granites are believed to be coeval to similar aged A-type granites of the Khetri and Alwar sub-basins of the North Delhi Fold Belt(NDFB).They are comparable in age and magmatic history to recorded A-type magmatism in North America and parts of the Chinese craton.The large geographical extents of synchronous A-type granites are proposed to be related to the Columbia Supercontinent assembly(ca.1.7 Ga;postcollisional granites).Thus,based on the studied extensional granites,we surmise that BGC-II was part of the Columbia Supercontinent.展开更多
The paper represents a new discovery of a late Mesoproterozoic lenticular and discontinuous, carbonatitic body exposed at Basantgarh, Sendra and near the Abu-road area of the Ambaji-Sendra belt of the South Delhi Fold...The paper represents a new discovery of a late Mesoproterozoic lenticular and discontinuous, carbonatitic body exposed at Basantgarh, Sendra and near the Abu-road area of the Ambaji-Sendra belt of the South Delhi Fold Belt. It is medium to coarse-grained and light to dark coloured compact rock. The common associates of the carbonatitic rock are felsic rocks, rich in alkalies. Carbonatite contains more than 50% carbonate minerals, the majority of which are calcite, dolomite, ankerite, augite-aegirine augite and plagioclase. It is classified as calcite carbonatite of the sövite variety due to its coarse-grained character, chemically as calico-carbonatite and magnesio-carbonatite and even as silico-carbonatites for having more than 20% SiO<sub>2</sub>. The ∑REE contents of calico-carbonatite samples are nearly 100 times greater than magnesio-carbonatite. Chondrite normalised REE profiles of calcio-carbonatites are LREE enriched with nearly flat HREEs whereas the magnesio-carbonatite is characterised by flat REE patterns. The mantle-normalized incompatible trace element spidergram of Ambaji-Sendra belt carbonatites shows distinct negative anomalies of Ba, Nb, Ta, P, Sm, Eu, Ti and Y and positive at U and Pb by calcio-carbonatite whereas the magnesio-carbonatite displays negative kinks at K, Zr, Nb, Ta and Ti and positive at Th, Pb and Sr. The variable and/or contrasting enrichment/depletion in various elements in the two types of Ambaji-Sendra belt carbonatite is attributed either to significant differences in the type and modal proportion of different accessory mineral species or selective incorporation of metasomatic fluids during the subduction process. The chemical attributes of Ambaji-Sendra belt carbonatite suggest its emplacement in subduction settings.展开更多
文摘The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ.
文摘The basement granite gneisses from the north-central Aravalli Craton in NW India were investigated for geochemistry and geochronology.In a peneplain terrain,the granite gneiss outcrops are scanty and samples were collected mainly from two small hills and several ground-level exposures in the Sakhun–Ladera region.Wellfoliated granite gneiss is the dominant lithology that also hosts dark,lenticular enclaves,and is in turn,intruded by mafic dykes.The granite gneiss has silica content ranging from 61.37 wt.%to 68.27 wt.%that marks a slight overlap with the enclaves(54.32wt.%to 62.17wt.%).Both groups have a highK2O/Na2O(~2 or higher)ratio.Geochemically,the granite gneiss classify as granite–granodiorite,and enclaves as granodiorite-diorite.The In-situ LA-ICP-MS zircon U–Pb geochronology of granite gneiss has yielded a statistically valid 1721±9 Ma age that we interpret as the emplacement age for the granitic protolith.Geochemical characteristics of granite gneiss underline fractional crystallization of an I-type melt as themain process,and continuity of trends in enclaves underlines their mutual genetic link.The genetic association is further verified by a consistency in the trace element characteristics and REE patterns.The Nd-isotope signatures define a single grouping for both granite gneiss and enclaves,withεNd(t)values ranging from−6.38 to−6.61,further substantiating a common source.The geochemical tectonic discrimination schemes consistently point toward an extensional setting and A-type characteristics for granite gneiss and enclaves.These are analogous to the coeval(1.72–1.75 Ga),A-type granitoids from the Khetri and Alwar basin in the North Delhi Fold Belt,implying a much larger areal extent for the Paleoproterozoic anorogenic magmatism in the northern segment of the Aravalli Craton.The Paleoproterozoic age for the presumed‘Archean’basement in this region offers tacit evidence that the BGC–II is a stratigraphically younger terrane as compared to the Archean age,BGC–I.
文摘Mesoproterozoic North Delhi fold belt of NW Indian shield comprises three volcano-sedimentary basins viz. Bayana, Alwar and Khetri aligned parallel to each other from east to west. Each basin contains excellent exposures of mafic volcanic rocks. Major, trace and rare earth element abundances of volcanic rocks of the three basins are significantly diverse. Bayana and Alwar volcanics are tholeiites bearing close similarity with low Ticontinental flood basalts. However, Bayana volcanics are characteristically enriched in incompatible trace elements and REEs while Alwar volcanics display least enriched incompatible trace element abundances and flat REE patterns. The Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. REE based source modeling suggests that Bayana suite was formed from the melts derived from 1 % to 10 %(avg.4 %) of the partial melting of a spinel lherzolite source giving a residual mineralogy of 56 % Olv, 25 % Opx and19 % Cpx. Whereas Alwar suite evolved through 12 %–20 %(avg. 15 %) partial melting of the same source with a residual mineralogy 61 % Olv, 25 % Opx and 14 % Cpx.Khetri volcanics are exposed at two localities Kolihan and Madhan–Kudhan. The Kolihan volcanics were derived from 1 % to 6 %(avg. 4 %) partial melting with residualmineralogy 56 % Olv, 25 % Opx and 19 % Cpx whereas the magma of Madhan Kudhan volcanic suite was generated by 15%–30 % partial melting of the same source leaving behind 64 % Olv, 25 % Opx and 11 % Cpx as residual mineralogy. This source modeling proves that melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field under the influence of mantle plume. During the course of ascent, Bayana melts were crustally contaminated but Alwar melts remained unaffected. There was two tier magma production in Khetri region, one from the partial melting of the mantle wedge overlying the subducted oceanic plate which formed Kolihan suite and two the melting of the subducted plate itself generating Madhan–Kudhan volcanics. It is interpreted that during Mesoproterozoic(1,800 Ma), the continental lithosphere of NW Indian shield suffered stretching, attenuation and fracturing in response to a rising plume. Consequently, differential crustal extension coupled with variable attenuation brought the asthenosphere to shallower setting which led to the production of tholeiitic melts. These melts enroute to the surface suffered variable lithospheric contamination depending upon the thickness of traversed crust. The Khetri basin attained maturity which resulted in the generation of true oceanic crust and its subsequent destruction through subduction. The spatial existence of three suites of mafic volcanics of diverse chemical signatures is best example of subduction–plume interaction. It is therefore, proposed that the Mesoproterozoic crust of NW Indian shield has evolved through the operation of a complete Wilson cycle at about1,832 Ma, the age of mafic volcanics of Khetri basin.
基金supported by the Science and Engineering Research Board(SERB),Government of India,New Delhi,under a Major Research Project(File No.CRG/2019/000088)sanctioned to MEAM.
文摘Granitoids and orthogneisses(1.7 Ga)from the northern part of the Banded Gneissic Complex(BGC-II domain),Aravalli Craton(NW India)are geochemically analyzed to understand the geodynamic condition and crustal evolution processes.The samples are metaluminous to peraluminous(molar A/CNK:0.74±2.12),and characterized by Eu-anomaly ranging from 0.17 to 1.06,Fe_(2)O_(3)^(T)/(Fe_(2)O_(3)^(T)+MgO)from 0.8 to 0.9 and high magmatic zircon saturation temperature(>830°C)which are the features suggestive of A-type granite affinity.Tectonic discrimination diagrams classify the samples as post-collisional extensional A2-type granites.Geochemical characteristics along with trace element ratios[(Y/Nb)_(N)=0.15 to 4.33(avg.0.76),(Th/Nb)_(N)=4.63 to 255.47(avg.63.13),(Th/Ta)_(N)=1.37 to 9.84(avg.8.86),(Ce/Pb)_(N)=0.05 to 3.05(avg.1.43)]indicate that the rocks were derived from a plagioclase-rich and garnet-free crustal source under lowpressure conditions.Further,it is also proposed that tonalite-trondhjemite-granodiorite(TTG)rocks which occur dominantly in southern Rajasthan(BGC-I)are precursors and their partial melting led to the generation of the studied A-type granite samples.The studied samples also bear close geochemical similarity with A-type granites of similar age(1.7 Ga)near the Sakhun-Ladera region of northern BGC-II.The studied A-type granites are believed to be coeval to similar aged A-type granites of the Khetri and Alwar sub-basins of the North Delhi Fold Belt(NDFB).They are comparable in age and magmatic history to recorded A-type magmatism in North America and parts of the Chinese craton.The large geographical extents of synchronous A-type granites are proposed to be related to the Columbia Supercontinent assembly(ca.1.7 Ga;postcollisional granites).Thus,based on the studied extensional granites,we surmise that BGC-II was part of the Columbia Supercontinent.
文摘The paper represents a new discovery of a late Mesoproterozoic lenticular and discontinuous, carbonatitic body exposed at Basantgarh, Sendra and near the Abu-road area of the Ambaji-Sendra belt of the South Delhi Fold Belt. It is medium to coarse-grained and light to dark coloured compact rock. The common associates of the carbonatitic rock are felsic rocks, rich in alkalies. Carbonatite contains more than 50% carbonate minerals, the majority of which are calcite, dolomite, ankerite, augite-aegirine augite and plagioclase. It is classified as calcite carbonatite of the sövite variety due to its coarse-grained character, chemically as calico-carbonatite and magnesio-carbonatite and even as silico-carbonatites for having more than 20% SiO<sub>2</sub>. The ∑REE contents of calico-carbonatite samples are nearly 100 times greater than magnesio-carbonatite. Chondrite normalised REE profiles of calcio-carbonatites are LREE enriched with nearly flat HREEs whereas the magnesio-carbonatite is characterised by flat REE patterns. The mantle-normalized incompatible trace element spidergram of Ambaji-Sendra belt carbonatites shows distinct negative anomalies of Ba, Nb, Ta, P, Sm, Eu, Ti and Y and positive at U and Pb by calcio-carbonatite whereas the magnesio-carbonatite displays negative kinks at K, Zr, Nb, Ta and Ti and positive at Th, Pb and Sr. The variable and/or contrasting enrichment/depletion in various elements in the two types of Ambaji-Sendra belt carbonatite is attributed either to significant differences in the type and modal proportion of different accessory mineral species or selective incorporation of metasomatic fluids during the subduction process. The chemical attributes of Ambaji-Sendra belt carbonatite suggest its emplacement in subduction settings.