Induced charge of a spherical dust particle on a plasma-facing wall was investigated analytically, where non-uniform electric field was applied externally. The one-dimensional nonuniform electrostatic potential was ap...Induced charge of a spherical dust particle on a plasma-facing wall was investigated analytically, where non-uniform electric field was applied externally. The one-dimensional nonuniform electrostatic potential was approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate was introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge.展开更多
A gas detector glass resistivity plate chamber (GRPC) is proposed for use in the hadron calorimeter (HCAL). The read-out system is based on a semi-digital system and, therefore, the charge information from GRPC is...A gas detector glass resistivity plate chamber (GRPC) is proposed for use in the hadron calorimeter (HCAL). The read-out system is based on a semi-digital system and, therefore, the charge information from GRPC is needed. To better understand the charge that comes out from the GRPC, we started from a cosmic ray test to get the charge distribution. We then studied the induced charge distribution on the collection pad. After successfully comparing it with the prototype beam test data at CERN (European Council for Nuclear Research), the process was finally implanted into the Geant4 based simulation for future study.展开更多
We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the elect...We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.展开更多
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec...The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.展开更多
A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced ch...A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.展开更多
Uniaxial strain induced ferroelectric phase transitions in rutile TiO2 are investigated by first-principles calculations. The calculated results show that the in-plane tensile strain induces rutile TiO2, paraelectric ...Uniaxial strain induced ferroelectric phase transitions in rutile TiO2 are investigated by first-principles calculations. The calculated results show that the in-plane tensile strain induces rutile TiO2, paraelectric phase with P4-2/mnm (D4h) space group, to a ferroelectric phase with Pm(Cs) space group, driven by the softening behaviour of the Eul mode. In addition, the out-of-plane tensile strain, vertical to the ab plane, leads to a ferroelectric phase with P42nm (C4v) space group, driven by the softening behaviour of the A2u mode. The critical tensile strains are 3.7% in-plane and 4.0% out-of-plane, respectively. In addition, the in-plane compression strain, which has the same structure variation as out- of-plane tensile strain due to Poisson effect, leads the paraelectric rutile TiO2 to a paraelectric phase with Pnnm (D2h) space group driven by the softening behaviour of the B1g mode. These results indicate that the sequence ferroelectric (or paraelectric) phase depends on the strain applied. The origin of ferroelectric stabilization in rutile TiO2 is also discussed briefly in terms of strain induced Born effective charge transfer.展开更多
The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]....The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].展开更多
The plasmon characteristics of two graphene nanostructures are studied using time-dependent den- sity functional theory (TDDFT). The absorption spectrum has two main bands, which result from and σ + π plasmon res...The plasmon characteristics of two graphene nanostructures are studied using time-dependent den- sity functional theory (TDDFT). The absorption spectrum has two main bands, which result from and σ + π plasmon resonances. At low energies, the Fourier transform of the induced charge density maps exhibits anomalous behavior, with a π phase change in the charge density maps in the plane of the graphene and those in the plane 0.3 A from the graphene. The charge density fluctuations close to the plane of the graphene are much smaller than those above and beneath the graphene plane. However, this phenomenon disappears at higher energies. By analyzing the electronic properties, we may conclude that the restoring force for the plasmon in the plane of the graphene does not result from fixed positive ions, but rather the Coulomb interactions with the plasmonic oscillations away from the plane of the graphene, which extend in the surface-normal direction. The collective oscillation in the graphene plane results in a forced vibration. Accordingly, the low-energy plasmon in the graphene can be split into two components: a normal component, which corresponds to direct feedback of the external perturbation, and a secondary component, which corresponds to feedback of the Coulombic interaction with the normal component.展开更多
Circular thin-plate electrostatic sensors are promising in gas path monitoring due to their advantages of non-intrusiveness and easy installation. The spatial sensitivity and filtering effect are two important perform...Circular thin-plate electrostatic sensors are promising in gas path monitoring due to their advantages of non-intrusiveness and easy installation. The spatial sensitivity and filtering effect are two important performance parameters. In this paper, an analytically mathematical model of induced charge on a circular thin-plate electrode is first derived. Then the spatial sensitivity and filtering effect of the circular electrostatic sensor are investigated by numerical calculations. Finally,experimental studies are performed to testify the theoretical results. Both theoretical and experimental results demonstrate that circular thin-plate electrostatic sensors act as a low-pass filter in the spatial frequency domain, and both the spatial filtering effect and the temporal frequency response characteristics depend strongly on the spatial position and velocity of the charged particle. These conclusions can provide guidelines for the optimal design of circular thin-plate electrostatic sensors.展开更多
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Induced charge of a spherical dust particle on a plasma-facing wall was investigated analytically, where non-uniform electric field was applied externally. The one-dimensional nonuniform electrostatic potential was approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate was introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge.
基金Supported by Fundamental Research Funds for the Central Universities Southwest University for Nationalities(JB2012092)
文摘A gas detector glass resistivity plate chamber (GRPC) is proposed for use in the hadron calorimeter (HCAL). The read-out system is based on a semi-digital system and, therefore, the charge information from GRPC is needed. To better understand the charge that comes out from the GRPC, we started from a cosmic ray test to get the charge distribution. We then studied the induced charge distribution on the collection pad. After successfully comparing it with the prototype beam test data at CERN (European Council for Nuclear Research), the process was finally implanted into the Geant4 based simulation for future study.
基金Supported by the Yarmouk Universitythe KUSTAR–KAIST Institution Fund
文摘We study the interaction of a uniform, cold and collisional plasma with a test charged particle moving off-axis at a constant speed down a cylindrical tube with a resistive thick metallic wall. Upon matching the electromagnetic field components at all interfaces, the induced monopole electromagnetic fields in the plasma are obtained in the frequency domain. An expression for the plasma electric resistance and reactance is derived and analyzed numerically for some representative parameters. Near the plasma resonant frequency, the plasma resistance evolves with frequency like a parallel RLC resonator with peak resistance at the plasma frequency pe, while the plasma reactance can be capacitive or inductive in nature depending on the frequency under consideration.
基金Supported by the National Natural Science Foundation of China (Grant No.22002031)the Natural Science Foundation of Zhejiang Province (Grant No.LY18F010019)the Innovation Project in Hangzhou for Returned Scholar。
文摘The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.
基金This research was supported by the National Key Research and Development Program of China(Grant No.2017YFC1501504)the National Natural Science Foundation of China(Grant Nos.41875003,41805002)the Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2019LASW-A03).
文摘A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.
基金supported by the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y200805750)
文摘Uniaxial strain induced ferroelectric phase transitions in rutile TiO2 are investigated by first-principles calculations. The calculated results show that the in-plane tensile strain induces rutile TiO2, paraelectric phase with P4-2/mnm (D4h) space group, to a ferroelectric phase with Pm(Cs) space group, driven by the softening behaviour of the Eul mode. In addition, the out-of-plane tensile strain, vertical to the ab plane, leads to a ferroelectric phase with P42nm (C4v) space group, driven by the softening behaviour of the A2u mode. The critical tensile strains are 3.7% in-plane and 4.0% out-of-plane, respectively. In addition, the in-plane compression strain, which has the same structure variation as out- of-plane tensile strain due to Poisson effect, leads the paraelectric rutile TiO2 to a paraelectric phase with Pnnm (D2h) space group driven by the softening behaviour of the B1g mode. These results indicate that the sequence ferroelectric (or paraelectric) phase depends on the strain applied. The origin of ferroelectric stabilization in rutile TiO2 is also discussed briefly in terms of strain induced Born effective charge transfer.
文摘The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].
基金We would like to acknowledge financial support from the National Natural Science Foundation of China (Grant No. 11074176) and the support from Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
文摘The plasmon characteristics of two graphene nanostructures are studied using time-dependent den- sity functional theory (TDDFT). The absorption spectrum has two main bands, which result from and σ + π plasmon resonances. At low energies, the Fourier transform of the induced charge density maps exhibits anomalous behavior, with a π phase change in the charge density maps in the plane of the graphene and those in the plane 0.3 A from the graphene. The charge density fluctuations close to the plane of the graphene are much smaller than those above and beneath the graphene plane. However, this phenomenon disappears at higher energies. By analyzing the electronic properties, we may conclude that the restoring force for the plasmon in the plane of the graphene does not result from fixed positive ions, but rather the Coulomb interactions with the plasmonic oscillations away from the plane of the graphene, which extend in the surface-normal direction. The collective oscillation in the graphene plane results in a forced vibration. Accordingly, the low-energy plasmon in the graphene can be split into two components: a normal component, which corresponds to direct feedback of the external perturbation, and a secondary component, which corresponds to feedback of the Coulombic interaction with the normal component.
基金supported by the National Natural Science Foundation of China(Nos.51275520,50805142)
文摘Circular thin-plate electrostatic sensors are promising in gas path monitoring due to their advantages of non-intrusiveness and easy installation. The spatial sensitivity and filtering effect are two important performance parameters. In this paper, an analytically mathematical model of induced charge on a circular thin-plate electrode is first derived. Then the spatial sensitivity and filtering effect of the circular electrostatic sensor are investigated by numerical calculations. Finally,experimental studies are performed to testify the theoretical results. Both theoretical and experimental results demonstrate that circular thin-plate electrostatic sensors act as a low-pass filter in the spatial frequency domain, and both the spatial filtering effect and the temporal frequency response characteristics depend strongly on the spatial position and velocity of the charged particle. These conclusions can provide guidelines for the optimal design of circular thin-plate electrostatic sensors.