Glycidyl methaerylate (GMA) is a recently recognized chemical mutagen. In order to explore the mutagenicity and mutagenic process of GMA, plasmid pBR322 was used for in vitro binding, mutant screening, and restriction...Glycidyl methaerylate (GMA) is a recently recognized chemical mutagen. In order to explore the mutagenicity and mutagenic process of GMA, plasmid pBR322 was used for in vitro binding, mutant screening, and restriction enzyme mapping. The binding between GMA and DNA in vitro has been verified by means of a spectrophotometric method. When pBR322 and GMAbound pBR322 were used to transform Eschenchia coli HB101, the following results were obtained: (1) The transformation efficiency of GMA-bound pBR322 was much lower than that of pBR322 alone. (2) GMA-bound pBR322 induced phenotype changes in competent cells (i.e., tetracycline-resistance inactivation or ampicillin-resistance inactivation). There were two mutants of pBR322, Ap~RTc~S and Ap~STc~R, in the transformants and a deductive mutant Ap~STc~S in the nontranstormants. (3) All of the selected mutants were stable and heritable. (4) When restriction enzyme maps were used to analyze the mutant Ap~RTc~S, four of seven maps were changed. some sites were shifted to other resistant gene regions, for example, sites of Bgll, EcoRl, Ilindlll. Hinclll, etc., and there was a new recognition site for Hindi (252). We did not observe any DNA fragment insertion or deletion on any maps. Our results suggest that when GMA is covalently linked to the plasmid DNA, it gives rise to a premutagenic lesion of DNA that is converted in vivo into a point mutation. (C)1990 Academic Press, Inc.展开更多
Effect of vitamin C supplementation in restoring lead induced alterations in hematopoietic system and drug metabolizing enzymes were investigated in male rats. Intraperitoneal administration of 20 mg/kg lead produced ...Effect of vitamin C supplementation in restoring lead induced alterations in hematopoietic system and drug metabolizing enzymes were investigated in male rats. Intraperitoneal administration of 20 mg/kg lead produced a significant inhibition of heme synthesis in blood and liver and drug metabolism in liver. Toxic insult by lead also resulted into a marked decline in tissue thiols and vitamin C levels. Oral supplementation of vitamin C (100 mg/kg for 3 days) completely restored blood delta aminolevulinic acid dehydratase, uroporphyrinogen I synthetase and a few drug metabolizing enzymes. Level of vitamin C and sulfhydryl contents too recovered to a great extent. A marked reduction in blood and liver lead concentration occurred on vitamin C supplementation although renal lead contents were marginally reduced in lead exposed animals. The results, thus, indicate a significant protective action of vitamin C against toxic effects of lead on heme synthesis and drug metabolism.展开更多
Present study deals with the straight impact of hypobaric hypoxia on the quantity and composition of some predominant fecal microflora and its functional aspects. For that, isolated fecal contents of rat were exposed ...Present study deals with the straight impact of hypobaric hypoxia on the quantity and composition of some predominant fecal microflora and its functional aspects. For that, isolated fecal contents of rat were exposed to two different simulated air pressures (70 kPa and 40 kPa) for different time durations (1, 3, and 5 h) and the bacterial community composition was compared with normobaric groups (101.3 kPa). It was found that the total anaerobes, Escherichio coli, Enterbocters spp., Bi^idobocterium spp., CIostridium spp. were increased whereas total aerobes were decreased at both hypobaric treatments. The increased number of amplicon was detected in the pressure-treated groups than the control that clearly mentioned the disruption of microbiota structure at different simulated hypobaric-hypoxia. The amylase, protease, tannase, 13-glucuronidase, and alkaline phosphatase activities were increased at these atmospheric pressures. Thus, the present investigation demonstrates that the hypobaric hypoxia is an important environmental factor which can strongly modulate the composition of intestinal flora as well as microfiora-derived functional aspects.展开更多
Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardatio...Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life.展开更多
Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promis...Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promising approach to eliminate environmental OP residues.Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments,so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.In this study,dichlorvos significantly inhibited the growth,sporulation and pigmentation of T.atroviride T23,and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions,including the nutrient and pH values of the medium.Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.The results showed that T23 could produce a series of enzymes,especially the intracellular enzymes,to degrade dichlorvos.The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration,ammonium sulfate and phosphate added in the medium.In conclusion,some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.展开更多
文摘Glycidyl methaerylate (GMA) is a recently recognized chemical mutagen. In order to explore the mutagenicity and mutagenic process of GMA, plasmid pBR322 was used for in vitro binding, mutant screening, and restriction enzyme mapping. The binding between GMA and DNA in vitro has been verified by means of a spectrophotometric method. When pBR322 and GMAbound pBR322 were used to transform Eschenchia coli HB101, the following results were obtained: (1) The transformation efficiency of GMA-bound pBR322 was much lower than that of pBR322 alone. (2) GMA-bound pBR322 induced phenotype changes in competent cells (i.e., tetracycline-resistance inactivation or ampicillin-resistance inactivation). There were two mutants of pBR322, Ap~RTc~S and Ap~STc~R, in the transformants and a deductive mutant Ap~STc~S in the nontranstormants. (3) All of the selected mutants were stable and heritable. (4) When restriction enzyme maps were used to analyze the mutant Ap~RTc~S, four of seven maps were changed. some sites were shifted to other resistant gene regions, for example, sites of Bgll, EcoRl, Ilindlll. Hinclll, etc., and there was a new recognition site for Hindi (252). We did not observe any DNA fragment insertion or deletion on any maps. Our results suggest that when GMA is covalently linked to the plasmid DNA, it gives rise to a premutagenic lesion of DNA that is converted in vivo into a point mutation. (C)1990 Academic Press, Inc.
文摘Effect of vitamin C supplementation in restoring lead induced alterations in hematopoietic system and drug metabolizing enzymes were investigated in male rats. Intraperitoneal administration of 20 mg/kg lead produced a significant inhibition of heme synthesis in blood and liver and drug metabolism in liver. Toxic insult by lead also resulted into a marked decline in tissue thiols and vitamin C levels. Oral supplementation of vitamin C (100 mg/kg for 3 days) completely restored blood delta aminolevulinic acid dehydratase, uroporphyrinogen I synthetase and a few drug metabolizing enzymes. Level of vitamin C and sulfhydryl contents too recovered to a great extent. A marked reduction in blood and liver lead concentration occurred on vitamin C supplementation although renal lead contents were marginally reduced in lead exposed animals. The results, thus, indicate a significant protective action of vitamin C against toxic effects of lead on heme synthesis and drug metabolism.
基金Council for Scientific and Industrial Research (CSIR),New Delhi for providing the fellowshipthe Defence Institute of Physiology & Allied Sciences (DIPAS),the Defence Research & Development Organisation (DRDO),Government of India,for their consecutive financial support
文摘Present study deals with the straight impact of hypobaric hypoxia on the quantity and composition of some predominant fecal microflora and its functional aspects. For that, isolated fecal contents of rat were exposed to two different simulated air pressures (70 kPa and 40 kPa) for different time durations (1, 3, and 5 h) and the bacterial community composition was compared with normobaric groups (101.3 kPa). It was found that the total anaerobes, Escherichio coli, Enterbocters spp., Bi^idobocterium spp., CIostridium spp. were increased whereas total aerobes were decreased at both hypobaric treatments. The increased number of amplicon was detected in the pressure-treated groups than the control that clearly mentioned the disruption of microbiota structure at different simulated hypobaric-hypoxia. The amylase, protease, tannase, 13-glucuronidase, and alkaline phosphatase activities were increased at these atmospheric pressures. Thus, the present investigation demonstrates that the hypobaric hypoxia is an important environmental factor which can strongly modulate the composition of intestinal flora as well as microfiora-derived functional aspects.
基金supported by the National Natural Science Foundation of China(NSFC),No.31201878,81172716,and U1204804Post Doctoral Foundation of China,No.2015M572109Post Doctoral Fund of Henan province,No.2014049
文摘Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life.
基金supported by the National Natural Science Foundation of China(31872015)the Shanghai Science and Technology Innovation Action Program of the Shanghai Science and Technology Commission,China(21N41900200)+2 种基金the Shanghai Agricultural Applied Technology Development Program(2022-02-08-00-12-F0-01143)the China Agriculture Research System of MOF and MARA(CARS-02)the National Key R&D Program of China(2017YFD0200403).
文摘Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promising approach to eliminate environmental OP residues.Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments,so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.In this study,dichlorvos significantly inhibited the growth,sporulation and pigmentation of T.atroviride T23,and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions,including the nutrient and pH values of the medium.Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.The results showed that T23 could produce a series of enzymes,especially the intracellular enzymes,to degrade dichlorvos.The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration,ammonium sulfate and phosphate added in the medium.In conclusion,some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.