The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
The reductive coupling reactions of aryl sulfonyl chloride induced by (TiCl4-Zn) reagent affords diaryl disulfide. However, reaction of aryl sulfonyl chloride with α,β-unsaturated ester under the same condition affo...The reductive coupling reactions of aryl sulfonyl chloride induced by (TiCl4-Zn) reagent affords diaryl disulfide. However, reaction of aryl sulfonyl chloride with α,β-unsaturated ester under the same condition affords β-arylsulfo ester.展开更多
We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that...We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.展开更多
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external el...This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.展开更多
The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electr...The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to soin-orbit dependent impurity scatterings.展开更多
9-Fluorenylidenemalononitrile (FDCN) or 1,1 diphenyl 2,2 dicyanoethylene (DPCN) reacted with 10 methyl 9,10 dihydroacridine (AcrH 2) under irradiation ( λ >320 nm) to give couping products. In order t...9-Fluorenylidenemalononitrile (FDCN) or 1,1 diphenyl 2,2 dicyanoethylene (DPCN) reacted with 10 methyl 9,10 dihydroacridine (AcrH 2) under irradiation ( λ >320 nm) to give couping products. In order to gain further insight into the mechanism of the photo induced reaction, the photophysics of the reactions of FDCN or DPCN with AcrH 2 have been investigated by using UV vis spectroscopy, fluorescence spectroscopy, excitation spectroscopy and time resolved fluorescence spectroscopy, respectively. The results show that FDCN or DPCN interacts with AcrH 2 in the ground states to form a charge transfer complex, which further reacts to give the coupling product upon irradiation.展开更多
Narrow bandpass filters(NBPFs)play important roles in optics,such as quantum communication,spectrometer,and wavelength division multiplexing.However,the stopband and restraint ability of traditional NBPFs is limited.I...Narrow bandpass filters(NBPFs)play important roles in optics,such as quantum communication,spectrometer,and wavelength division multiplexing.However,the stopband and restraint ability of traditional NBPFs is limited.In this article,a coupled Tamm plasmon polaritons(TPPs)induced transmission theory has been proposed to design high-efficiency NBPFs with ultra-wide deep stopbands.An NBPF at 1.55 μm has been experimentally demonstrated with full width at half maximum(FWHM)of 10 nm and stopband ranging from 0.2 to 25 μm which is 62 times wider than that of traditional ones.Furthermore,the restraint depth of the stopband reaches 0.03%,which is only 1/20 of a traditional filter with the same FWHM.Its advantage in restraining ambient light over traditional ones has also been demonstrated with an InGaAs infrared detector.It provides a very powerful way to capture specific narrowband optical signals from ultra-wide strong ambient light,especially useful for daytime quantum communications.展开更多
Cavity quantum electrodynamics (QED) is mainly re- searching the interaction process with a coherent atomic medium placed inside an optical resonant cavity, and has been of great interest in recent years. A well-kno...Cavity quantum electrodynamics (QED) is mainly re- searching the interaction process with a coherent atomic medium placed inside an optical resonant cavity, and has been of great interest in recent years. A well-known cavity- QED effect is the vacuum Rabi splitting or normal-mode splitting phenomenon that is under the strong coupling condition,展开更多
We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is ...We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is closely related with the interference of dipole-microcavity systems, and we can generate different classes of multi- partite entanglement, e.g., the Greenberger-Horne-Zeilinger state, the W state, and the Dicke state, of the di- pole emitters just by choosing an appropriate frequency of the incident photon. Benefiting from the DIT effect, the schemes may work in the bad or low-Q cavity regime only if the large Purcell factor of the dipole-microcavity system is fulfilled, and they are also insensitive to experimental noise, which may be feasible with present acces- sible technology.展开更多
The corrosion behaviour of a non-equiatomic CoCrFeNiMo high-entropy alloy(HEA)in H_(2)S-containing and H_(2)S-free environments was studied by electrochemical tests,surface characterization,and solution analysis.The r...The corrosion behaviour of a non-equiatomic CoCrFeNiMo high-entropy alloy(HEA)in H_(2)S-containing and H_(2)S-free environments was studied by electrochemical tests,surface characterization,and solution analysis.The results showed that the HEA exhibited primary and secondary passivation in the H_(2)S-free environment,and the transition was owing to the enhanced dissolution of Fe species.Compared with the primary passive film,the Cr/Fe ratio in the secondary passive film increased at the expense of the selective dissolution of Fe.Therefore,the corrosion resistance of HEA decreased with the applied potential.Cr was the most stable element in the film of HEA,regardless of H_(2)S.The presence of H_(2)S accelerated the dissolution of all the cationic elements in the HEA.H_(2)S promoted the formation of thicker but less protective surface film and induced the loss of passivity.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
文摘The reductive coupling reactions of aryl sulfonyl chloride induced by (TiCl4-Zn) reagent affords diaryl disulfide. However, reaction of aryl sulfonyl chloride with α,β-unsaturated ester under the same condition affords β-arylsulfo ester.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874049)the State Key Program for Basic Research of China (Grant No. 2007CB925204)the Natural Science Foundation of Guangdong Province of China (GrantNo. 07005834)
文摘We study theoretically the influence of spin-orbit coupling induced by in-plane external electric field on the intrinsic spin-Hall effect in a two-dimensional electron gas with Rashba spin-orbit coupling. We show that, after such an influence is taken into account, the static intrinsic spin-Hall effect can be stabilized in a disordered Rashba twodimensional electron gas, and the static intrinsic spin-Hall conductivity shall exhibit some interesting characteristics as conceived in some original theoretical proposals.
基金Project supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No07005834)
文摘This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect,which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal).By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate,it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one).The theoretical results obtained are in good agreement with recent relevant experimental results.
基金Supported by the National Natural Science Foundation of China under Grant No.10874049the State Key Program for Basic Research of China under Grant No.2007CB925204the Natural Science Foundation of Guangdong Province under Grant No.07005834
文摘The extrinsic mechanism for anomalous Hall effect in ferromagnets is extended to include the contributions both from spin-orbit-dependent impurity scattering and from the spin-orbit coupling induced by external electric fields. The results obtained suggest that, within the framework of the extrinsic mechanisms, the anomalous Hall current in a ferromagnet may also contain a substantial amount of dissipationless contribution independent of impurity scattering. After the contribution from the spin-orbit coupling induced by external electric fields is included, the total anomalous Hall conductivity is about two times larger than that due to soin-orbit dependent impurity scatterings.
文摘9-Fluorenylidenemalononitrile (FDCN) or 1,1 diphenyl 2,2 dicyanoethylene (DPCN) reacted with 10 methyl 9,10 dihydroacridine (AcrH 2) under irradiation ( λ >320 nm) to give couping products. In order to gain further insight into the mechanism of the photo induced reaction, the photophysics of the reactions of FDCN or DPCN with AcrH 2 have been investigated by using UV vis spectroscopy, fluorescence spectroscopy, excitation spectroscopy and time resolved fluorescence spectroscopy, respectively. The results show that FDCN or DPCN interacts with AcrH 2 in the ground states to form a charge transfer complex, which further reacts to give the coupling product upon irradiation.
基金This work was funded by the National Natural Science Foundation of China(NSFC)(No.11874376)Shanghai Science and Technology Foundations(Nos.19DZ2293400,19ZR1465900,and 21WZ2504800)+3 种基金Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)the Chinese Academy of Sciences President’s International Fellowship Initiative(Nos.2020VTA0009,2020PT0020,and 2021PT0007)And thanks to the support of Soft Matter Nanofab(No.SMN180827)Analytical Instrumentation Center(No.#SPST-AIC10112914)(SPST,ShanghaiTech University).
文摘Narrow bandpass filters(NBPFs)play important roles in optics,such as quantum communication,spectrometer,and wavelength division multiplexing.However,the stopband and restraint ability of traditional NBPFs is limited.In this article,a coupled Tamm plasmon polaritons(TPPs)induced transmission theory has been proposed to design high-efficiency NBPFs with ultra-wide deep stopbands.An NBPF at 1.55 μm has been experimentally demonstrated with full width at half maximum(FWHM)of 10 nm and stopband ranging from 0.2 to 25 μm which is 62 times wider than that of traditional ones.Furthermore,the restraint depth of the stopband reaches 0.03%,which is only 1/20 of a traditional filter with the same FWHM.Its advantage in restraining ambient light over traditional ones has also been demonstrated with an InGaAs infrared detector.It provides a very powerful way to capture specific narrowband optical signals from ultra-wide strong ambient light,especially useful for daytime quantum communications.
基金supported by the National Natural Science Foundation of China under Grant Nos.61575112 and 61308121
文摘Cavity quantum electrodynamics (QED) is mainly re- searching the interaction process with a coherent atomic medium placed inside an optical resonant cavity, and has been of great interest in recent years. A well-known cavity- QED effect is the vacuum Rabi splitting or normal-mode splitting phenomenon that is under the strong coupling condition,
基金supported by the National Natural Science Foundation of China(Nos.11405052,11504104,and11704115)the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control(No.QSQC1409)
文摘We propose a feasible scheme of generating multipartite entanglement with the dipole induced transparency (D/T) effect in indirectly coupled dipole-microcavity systems. It is shown that the transmission spectrum is closely related with the interference of dipole-microcavity systems, and we can generate different classes of multi- partite entanglement, e.g., the Greenberger-Horne-Zeilinger state, the W state, and the Dicke state, of the di- pole emitters just by choosing an appropriate frequency of the incident photon. Benefiting from the DIT effect, the schemes may work in the bad or low-Q cavity regime only if the large Purcell factor of the dipole-microcavity system is fulfilled, and they are also insensitive to experimental noise, which may be feasible with present acces- sible technology.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-098A1)the National Natural Science Foundation of China(No.52101067).
文摘The corrosion behaviour of a non-equiatomic CoCrFeNiMo high-entropy alloy(HEA)in H_(2)S-containing and H_(2)S-free environments was studied by electrochemical tests,surface characterization,and solution analysis.The results showed that the HEA exhibited primary and secondary passivation in the H_(2)S-free environment,and the transition was owing to the enhanced dissolution of Fe species.Compared with the primary passive film,the Cr/Fe ratio in the secondary passive film increased at the expense of the selective dissolution of Fe.Therefore,the corrosion resistance of HEA decreased with the applied potential.Cr was the most stable element in the film of HEA,regardless of H_(2)S.The presence of H_(2)S accelerated the dissolution of all the cationic elements in the HEA.H_(2)S promoted the formation of thicker but less protective surface film and induced the loss of passivity.