Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a dis...Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.展开更多
为了实现受操作空间限制和辐射环境下,高温气冷堆蒸汽发生器传热管道堵管钨极惰性气体保护电弧焊(tungsten inert gas welding, TIG)的质量监测,搭建了一套基于光纤光谱仪的TIG焊接过程实时监测系统,用于核电传热管道堵管TIG焊接熔深监...为了实现受操作空间限制和辐射环境下,高温气冷堆蒸汽发生器传热管道堵管钨极惰性气体保护电弧焊(tungsten inert gas welding, TIG)的质量监测,搭建了一套基于光纤光谱仪的TIG焊接过程实时监测系统,用于核电传热管道堵管TIG焊接熔深监测.试验研究采用该系统采集电弧光谱,利用主成分分析法获取不同焊缝熔深的光谱主成分特征,创新性提出了一种ATT-L2R-BiLSTM深度学习模型,实现了堵管TIG焊接过程中焊缝熔深的分类识别.结果表明,实验室条件下模型准确率可达92.61%,比Bi-LSTM网络准确率提高5.11%,该模型在核电蒸汽发生器堵管验证平台进行了测试和验证,准确率达到99.26%,最终,实现了光谱信息不完备下TIG焊接质量特征深度挖掘,以及TIG焊接熔深的精准评估.展开更多
Pulsed tungsten inert gas (TIG) welding is widely used in industry due to its superior properties, so the measurement of arc telnperature is important to analyse welding process. Arc image of spectral line in 794.8 ...Pulsed tungsten inert gas (TIG) welding is widely used in industry due to its superior properties, so the measurement of arc telnperature is important to analyse welding process. Arc image of spectral line in 794.8 nm is captured by high speed camera; both the Abel inversion and the Fowler-Milne method are used to calculate the temperature distribution of the pulsed TIG welding. Characteristic of transient variation in arc intensity and temperature is analyzed. When the change of current happens, intensity and temperature of arc jump as well, it costs several millisoconds. The flirther the axial position from the tungsten is, the greater the intensity jumps, and the smaller the temperature changes.展开更多
High chromium (9-12% Cr) steels with excellent heat resistance and CrMoV steels with good toughness were potential candidates for combined rotor for steam turbine operated over 620℃. Two welding techniques were use...High chromium (9-12% Cr) steels with excellent heat resistance and CrMoV steels with good toughness were potential candidates for combined rotor for steam turbine operated over 620℃. Two welding techniques were used to fabricate 9% Cr and CrMoV dissimilar welded joint. The results show that the carbon migration only appears in the specimen using narrow gap submerged arc welding (NG-SAW) technique, yet it can be effectively prevented by adding tungsten inert gas (TlG) overlaying process before the NG-SAW. The carbon migration occurred in NG-SAW resulting from the sharp transition of the strong carbide-forming element Cr between the weld (-2.7 wt%) and the base metal (- 9 wt%). On the contrary, the application of TIG overlaying layers can promote the diffusion of Cr element, and therefore result in its much smaller concentration gradient. That is to say, a gentle transition zone of Cr element can be created among the SAW weld, TIG overlaying layers and the base metal, which effectively prevents the carbon migration and therefore produces a decreased carbon concentration adjacent to the fusion line.展开更多
2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zo...2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.展开更多
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad...High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.展开更多
The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the ...The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investiga...The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.展开更多
Through collecting the radiation of tungsten inert gas (TIG) welding arc, the radiation distribution in ultraviolet zone is analyzed in order to study the variation rule of ultraviolet radiation versus welding condi...Through collecting the radiation of tungsten inert gas (TIG) welding arc, the radiation distribution in ultraviolet zone is analyzed in order to study the variation rule of ultraviolet radiation versus welding condition. The explanation for the variation is also provided based on spectral radiation theory of arc light. Furthermore, through analysis of disturbance factors, the integral intensity signal of radiation in ultraviolet zone is applied for diagnosis of welding process. The spectral signal of ultraviolet radiation can reflect the disturbance factors and welding conditions, which can be used for online diagnosis of welding process.展开更多
文摘Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.
文摘为了实现受操作空间限制和辐射环境下,高温气冷堆蒸汽发生器传热管道堵管钨极惰性气体保护电弧焊(tungsten inert gas welding, TIG)的质量监测,搭建了一套基于光纤光谱仪的TIG焊接过程实时监测系统,用于核电传热管道堵管TIG焊接熔深监测.试验研究采用该系统采集电弧光谱,利用主成分分析法获取不同焊缝熔深的光谱主成分特征,创新性提出了一种ATT-L2R-BiLSTM深度学习模型,实现了堵管TIG焊接过程中焊缝熔深的分类识别.结果表明,实验室条件下模型准确率可达92.61%,比Bi-LSTM网络准确率提高5.11%,该模型在核电蒸汽发生器堵管验证平台进行了测试和验证,准确率达到99.26%,最终,实现了光谱信息不完备下TIG焊接质量特征深度挖掘,以及TIG焊接熔深的精准评估.
基金the National Natural Science Foundation of China (No. 51275299)
文摘Pulsed tungsten inert gas (TIG) welding is widely used in industry due to its superior properties, so the measurement of arc telnperature is important to analyse welding process. Arc image of spectral line in 794.8 nm is captured by high speed camera; both the Abel inversion and the Fowler-Milne method are used to calculate the temperature distribution of the pulsed TIG welding. Characteristic of transient variation in arc intensity and temperature is analyzed. When the change of current happens, intensity and temperature of arc jump as well, it costs several millisoconds. The flirther the axial position from the tungsten is, the greater the intensity jumps, and the smaller the temperature changes.
文摘High chromium (9-12% Cr) steels with excellent heat resistance and CrMoV steels with good toughness were potential candidates for combined rotor for steam turbine operated over 620℃. Two welding techniques were used to fabricate 9% Cr and CrMoV dissimilar welded joint. The results show that the carbon migration only appears in the specimen using narrow gap submerged arc welding (NG-SAW) technique, yet it can be effectively prevented by adding tungsten inert gas (TlG) overlaying process before the NG-SAW. The carbon migration occurred in NG-SAW resulting from the sharp transition of the strong carbide-forming element Cr between the weld (-2.7 wt%) and the base metal (- 9 wt%). On the contrary, the application of TIG overlaying layers can promote the diffusion of Cr element, and therefore result in its much smaller concentration gradient. That is to say, a gentle transition zone of Cr element can be created among the SAW weld, TIG overlaying layers and the base metal, which effectively prevents the carbon migration and therefore produces a decreased carbon concentration adjacent to the fusion line.
文摘2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.
文摘High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.
基金Project(51771160)supported by the National Natural Science Foundation of ChinaProject(2018JJ4048)supported by the Provincial and Municipal Joint Fund for Natural Science of Hunan Province,China
文摘The dissimilar joints of AZ61 and ZK60 magnesium alloys were obtained by tungsten inert gas arc(TIG)welding and activating tungsten inert gas arc(A-TIG)welding processes.Microstructure characterization shows that,the fineα-Mg equiaxed dendrite crystals contained Mg17Al12 and MgZn2 particles in the fusion zone.The average size of theα-Mg grains in the fusion zone was refined to 19μm at welding current of 80 A,which resulted in the largest tensile strength of 207 MPa.The tensile strength and the width of the beam of the A-TIG welded AZ61/ZK60 joints showed strong dependence on the amount of TiO2.However,the inhomogeneity of the heat-affected zone near different base metals presented no significant effect on the mechanical properties of the welded joint.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.
基金Project(51375511) supported by the National Natural Science Foundation of ChinaProject(cstc2016jcyj A0167) supported by the Research Program of Basic Research and Frontier Technology of Chongqing of China+1 种基金Project(SF201602) supported by the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of ChinaProject(XJ201608) supported by the Key Industry Technology Innovation Funds of Science and Technology Development Board of Xiangcheng District of Suzhou of China
文摘The effects of graphene nanoplates(GNPs)on the microstructures and mechanical properties of nanoparticlesstrengthening activating tungsten inert gas arc welding(NSA-TIG)welded AZ31magnesium alloy joints were investigated.It wasfound that compared with those of activating TIG(A-TIG),and obvious refinement ofα-Mg grains was achieved and the finestα-Mggrains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating.In addition,thepenetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux.However,the welded jointswith TiO2+GNPs flux coating showed better mechanical properties(i.e.,ultimate tensile strength and microhardness)than those withTiO2+SiCp flux coating.Moreover,the generation of necking only occurred in the welded joints with TiO2+GNPs flux.
基金This work is supported by National Natural Science Foundation of China(50505048).
文摘Through collecting the radiation of tungsten inert gas (TIG) welding arc, the radiation distribution in ultraviolet zone is analyzed in order to study the variation rule of ultraviolet radiation versus welding condition. The explanation for the variation is also provided based on spectral radiation theory of arc light. Furthermore, through analysis of disturbance factors, the integral intensity signal of radiation in ultraviolet zone is applied for diagnosis of welding process. The spectral signal of ultraviolet radiation can reflect the disturbance factors and welding conditions, which can be used for online diagnosis of welding process.