According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's g...According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.展开更多
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generall...A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative tri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.展开更多
基金Supported by National Natural Science Foundation of China (No. 50375106) , the State Scholarship Fund (No. 2004812032) and Key Laboratory of Intelligent Manufacturing at Shantou University ( No. Imstu-2002-11).
文摘According to the definition of the new hypothetical states which have obvious physical significance and are termed as no-gravity static and accelerated states, a method for exact computation of the parallel robot's generalized inertia matrix is presented. Based on the matrix theory, the generalized inertia matrix of the parallel robot can be computed on the assumption that the robot is in these new hypothetical states respectively. The approach is demonstrated by the Delta robot as an example. Based on the principle of the virtual work, the inverse dynamics model of the robot is formulized after the kinematics analysis. Finally, a numerical example is given and the element distribution of the Delta robot's inertia matrix in the workspace is studied. The method has computationa', advantage of numerical accuracy for the Delta robot and can be parallelized easily.
文摘A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative tri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.