The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost so...This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.展开更多
The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error model...The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.展开更多
Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of ...Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.展开更多
The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phas...The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.展开更多
The cost of the gravity passive inertial navigation system will be lower witha rate azimuth platform and gravity sensor constituting a gravity measurement and navigationsystem. According to the system performance char...The cost of the gravity passive inertial navigation system will be lower witha rate azimuth platform and gravity sensor constituting a gravity measurement and navigationsystem. According to the system performance characteristics, we study the rate azimuth platforminertial navigation system (RAPINS), give the system navigation algorithm, error equations of theattitude, velocity and position of the rate azimuth platform, and random error models of theaccelerometer and gyro. Using the MATLAB/Simulink tools, we study the RAPINS and RAPINS withvelocity damping. Simulation results demonstrate that the RAPINS with velocity damping has smallerrors in platform attitude and position and satisfies gravity measurement and navigationrequirement.展开更多
With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.T...With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.展开更多
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The perfo...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors,disturbed local magnetic field,and complex motion modes of the pedestrian.This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE)framework,which can be applied for long-term navigation tasks.A Bi-directional Long Short-Term Memory(Bi-LSTM)based quasi-static magnetic field(QSMF)detection algorithm is developed for extracting useful magnetic observation for heading calibration,and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period.In addition,a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks,and enhanced by the magnetic and trajectory features assisted loop detection algorithm.Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms,and final estimated heading and positioning accuracy indexes reaches 5and less than 2 m under the time period of 30 min,respectively.展开更多
在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(A...在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(Adaptive Kalman Filtering,AKF)的RFID/SINS组合导航系统,通过RFID定位系统抑制惯性导航误差发散,并应用AKF将噪声参数与量测输出参数关联实现实时更新。对AKF和标准卡尔曼滤波(Kalman Filtering,KF)下的RFID/SINS组合导航系统进行了仿真和实验。结果表明,在AKF下组合导航系统平均定位误差降低了10%,位置稳定性提升了7.4%,定位误差保持在0.07 m左右。基于AKF的RFID/SINS组合导航系统能够满足室内高精度定位导航的需求。展开更多
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
文摘This Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer technologies have been widely used in a variety of positioning and navigation applications. In this paper, a low cost solid state INS/GPS/Magnetometer integrated navigation system has been developed that incorporates measurements from an Inertial Navigation System (INS), Global Positioning System (GPS) and fluxgate magnetometer (Mag.) to provide a reliable complete navigation solution at a high output rate. The body attitude estimates, especially the heading angle, are fundamental challenges in a navigation system. Therefore targeting accurate attitude estimation is considered a significant contribution to the overall navigation error. A better estimation of the body attitude estimates leads to more accurate position and velocity estimation. For that end, the aim of this research is to exploit the magnetometer and accelerometer data in the attitude estimation technique. In this paper, a Scaled Unscented Kalman Filter (SUKF) based on the quaternion concept is designed for the INS/GPS/Mag integrated navigation system under large attitude error conditions. Simulation and experimental results indicate a satisfactory performance of the newly developed model.
基金Supported by the National Natural Science Foundation of China(60702003)~~
文摘The principle of the inertial navigation system(INS) with rotating inertial measurement unit (IMU) is analyzed. A new IMU is established to rotate round each axis in three directions. Then, the related error models for the designed system during rotating are deduced and the improved system is built. Finally, the performance simulation of the proposed system is provided. The simulation result indicates that the designed system can improve the accuracy of the roll and the pitch as well as heading by rotating three axes, thus guaranting the heading accuracy. Moreover, based on the principle of rotation at six different positions, such structure can carry out real-time calibration, and improve the system performance.
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.
文摘The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.
文摘The cost of the gravity passive inertial navigation system will be lower witha rate azimuth platform and gravity sensor constituting a gravity measurement and navigationsystem. According to the system performance characteristics, we study the rate azimuth platforminertial navigation system (RAPINS), give the system navigation algorithm, error equations of theattitude, velocity and position of the rate azimuth platform, and random error models of theaccelerometer and gyro. Using the MATLAB/Simulink tools, we study the RAPINS and RAPINS withvelocity damping. Simulation results demonstrate that the RAPINS with velocity damping has smallerrors in platform attitude and position and satisfies gravity measurement and navigationrequirement.
文摘With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields,for instance,smart healthcare,emergency rescue,soldier positioning et al.The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors,disturbed local magnetic field,and complex motion modes of the pedestrian.This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE)framework,which can be applied for long-term navigation tasks.A Bi-directional Long Short-Term Memory(Bi-LSTM)based quasi-static magnetic field(QSMF)detection algorithm is developed for extracting useful magnetic observation for heading calibration,and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period.In addition,a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks,and enhanced by the magnetic and trajectory features assisted loop detection algorithm.Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms,and final estimated heading and positioning accuracy indexes reaches 5and less than 2 m under the time period of 30 min,respectively.