期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
NUMERICAL STUDY OF DIFFERENTIAL TORQUE-PRODUCING JETS IN A FLOATED-BALL INERTIAL PLATFORM
1
作者 章光华 朱雅萍 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1998年第1期1-9,共9页
This paper presents a numerical study of the flow field caused by torque-producing jets in a floated-ball inertial guiding system. The basic flow element studied is the flow in a triangular region of octant sphere sur... This paper presents a numerical study of the flow field caused by torque-producing jets in a floated-ball inertial guiding system. The basic flow element studied is the flow in a triangular region of octant sphere surface confined by the two sphere surfaces and the three attitude-driver bands normal to each other. The results show the flow patterns of torque-producing jets and the relations between the effective driving torques and the flow rates under several typical working conditions. The working performances of two kinds of differential torque-producing jets are analyzed and compared. The second kind of differential torque-producing jets, which is first proposed in this paper, has the prominent merit, i.e., the regulation of the three components of driving torque can be realized by non-interference adjustment, so that the three components of angular displacement can be controlled independently. 展开更多
关键词 floated-ball inertial platform differential torque-producing jets N-S equation Reynolds equation
全文增补中
Generation of Accelerated Stability Experiment Profile of Inertial Platform Based on Finite Element
2
作者 CHEN Yunxia HUANG Xiaokai KANG Rui 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期584-592,共9页
The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could... The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform. 展开更多
关键词 inertial platform residual stresses accelerated stability orthogonal experimental design ANSYS thermal-structural coupled analysis
原文传递
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
3
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
下载PDF
Reduced-order design of Robust H_∞ Controller for an Inertial Stabilized Aerial Platform
4
作者 Xiangyang ZHOU Yuqian LI Chao YANG 《Instrumentation》 2019年第3期2-9,共8页
The uncertainty disturbance is one of the main disturbances that seriously influences the stabilization precision of an aerial inertially stabilized platform(ISP)system.In this paper,to improve the stabilization preci... The uncertainty disturbance is one of the main disturbances that seriously influences the stabilization precision of an aerial inertially stabilized platform(ISP)system.In this paper,to improve the stabilization precision of the ISP under disturbance uncertainty,a robust H∞controller is designed in this paper.Then,the reduction order is carried out for high-order controllers generated by the robust H∞loop shaping control method.The application of the minimum implementation and balanced truncation algorithm in controller reduction is discussed.First,the principle of reduced order of minimum implementation and balanced truncation are analyzed.Then,the method is used to reduce the order of the high-order robust H∞loop shaping controller.Finally,the method is analyzed and verified by the simulations and experiments.The results show that by the reduced-order method of minimum implementation and balanced truncation,the stabilization precision of the robust H∞loop shaping controller is increased by about 10%. 展开更多
关键词 Aerial Remote Sensing inertial Stabilization platform Robust H_∞Control Controller Reduction Balanced Truncation
下载PDF
Improved Angular Velocity Estimation Using MEMS Sensors with Applications in Miniature Inertially Stabilized Platforms 被引量:4
5
作者 ZHOU Xiaoyao ZHANG Zhiyong FAN Dapeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期648-656,共9页
The performance of any inertially stabilized platform (ISP) is strongly related to the bandwidth and accuracy of the angular velocity signals. This paper discusses the development of an optimal state estimator for s... The performance of any inertially stabilized platform (ISP) is strongly related to the bandwidth and accuracy of the angular velocity signals. This paper discusses the development of an optimal state estimator for sensing inertial velocity using low-cost micro-electro-mechanical systems (MEMS) sensors. A low-bandwidth gyroscope is used alone with two low-performance accelerometers to obtain the estimation. The gyroscope has its own limited dynamics and mainly contributes to the low-frequency components of the estimation. The accelerometers have inherent biases and mainly contribute to the high-frequency components of the estimation. Extensive experimental results show that the state estimator can achieve high-performance signals over a wide range of velocities without drifts in both the t- and s-domains. Furthermore, with applications in miniature inertially stabilized platforms, the control characteristic presents a significantly improvement over the existing methods. The method can be also applied to robotics, attitude estimation, and friction compensation. 展开更多
关键词 angular velocity low-cost sensor GYROSCOPE ACCELEROMETER Kalman filter inertially stabilized platform
原文传递
Application in prestiction friction compensation for angular velocity loop of inertially stabilized platforms 被引量:5
6
作者 Zhang Zhiyong Li Zhiqiang +2 位作者 Zhou Qingkun Zhang Lianchao Fan Dapeng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期655-662,共8页
Abstract To overcome the influence of the nonlinear friction on the gimbaled servo-system of an inertial stabilized platforms (ISPs) with DC motor direct-drive, the methods of modeling and compensation of the nonlin... Abstract To overcome the influence of the nonlinear friction on the gimbaled servo-system of an inertial stabilized platforms (ISPs) with DC motor direct-drive, the methods of modeling and compensation of the nonlinear friction are proposed. Firstly, the inapplicability of LuGre model when trying to interpret the backward angular displacement in the prestiction regime is observed experimentally and the reason is deduced theoretically. Then, based on the dynamic model of direct-drive ISPs, a modified LuGre model is proposed to describe the characteristic of the friction in the prestiction regime. Furthermore, the state switch condition of the three friction regimes including presliding, gross sliding and prestiction is presented. Finally, a composite compensation controller including a nonlinear friction observer and a feedforward compensator based on the novel LuGre model is designed to restrain the nonlinear friction and to improve the control precision. Experimental results indicate that compared with those of the conventional proportion-integrationdifferentiation (PID) control method and the PID plus LuGre model-based friction compensation method, the dwell-time has decreased from 0.2 s to almost 0 s, the position error decreased to 86.7% and the peak-to-peak value of position error decreased to 80% after the novel compensation controller is added. It concludes that the composite compensation controller can greatly improve the control precision of the dynamic sealed ISPs. 展开更多
关键词 Closed loop control systems Friction compensation inertially stabilized platforms Prestiction STICTION
原文传递
High-precision gyro-stabilized control of a gear-driven platform with a floating gear tension device 被引量:1
7
作者 Xianliang JIANG Dapeng FAN +2 位作者 Shixun FAN Xin XIE Ning CHEN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第3期487-503,共17页
This study presents an improved compound control algorithm that substantially enhances the antidisturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device.The tension device ca... This study presents an improved compound control algorithm that substantially enhances the antidisturbance performance of a gear-drive gyro-stabilized platform with a floating gear tension device.The tension device can provide a self-adjustable preload to eliminate the gap in the meshing process.However,the weaker gear support stiffness and more complex meshing friction are also induced by the tension device,which deteriorates the control accuracy and the ability to keep the aim point of the optical sensors isolated from the platform motion.The modeling and compensation of the induced complex nonlinearities are technically challenging,especially when base motion exists.The aim of this research is to cope with the unmeasured disturbances as well as the uncertainties caused by the base lateral motion.First,the structural properties of the gear transmission and the friction-generating mechanism are analyzed,which classify the disturbances into two categories:Time-invariant and time-varying parts.Then,a proportional-integral controller is designed to eliminate the steady-state error caused by the time-invariant disturbance.A proportional multiple-integral-based state augmented Kalman filter is proposed to estimate and compensate for the time-varying disturbance that can be approximated as a polynomial function.The effectiveness of the proposed compound algorithm is demonstrated by comparative experiments on a gear-drive pointing system with a floating gear tension device,which shows a maximum 76%improvement in stabilization precision. 展开更多
关键词 inertially stabilized platform floating gear tension device nonlinear friction disturbance compensation proportional multiple-integral observer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部