In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad...In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.展开更多
This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with...This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.展开更多
A conic Newton method is attractive because it converges to a local minimizzer rapidly from any sufficiently good initial guess. However, it may be expensive to solve the conic Newton equation at each iterate. In this...A conic Newton method is attractive because it converges to a local minimizzer rapidly from any sufficiently good initial guess. However, it may be expensive to solve the conic Newton equation at each iterate. In this paper we consider an inexact conic Newton method, which solves the couic Newton equation oldy approximately and in sonm unspecified manner. Furthermore, we show that such method is locally convergent and characterizes the order of convergence in terms of the rate of convergence of the relative residuals.展开更多
In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the He...In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.展开更多
In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the ...In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.展开更多
A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstra...A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.展开更多
Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonl...Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear programming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems. We validate our implementation using a set of test problems from the literature, comparing different formulations and the use of the minimization solvers.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
基金Supported by National Natural Science Foundation of China (No.51275348)College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
文摘In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
基金Project supported by the National Natural Science Foundation of China (No. 10871130)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20093127110005)the Shanghai Leading Academic Discipline Project (No. T0401)
文摘This paper proposes an inexact Newton method via the Lanczos decomposed technique for solving the box-constrained nonlinear systems. An iterative direction is obtained by solving an affine scaling quadratic model with the Lanczos decomposed technique. By using the interior backtracking line search technique, an acceptable trial step length is found along this direction. The global convergence and the fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the results of the numerical experiments show the effectiveness of the pro- posed algorithm.
文摘A conic Newton method is attractive because it converges to a local minimizzer rapidly from any sufficiently good initial guess. However, it may be expensive to solve the conic Newton equation at each iterate. In this paper we consider an inexact conic Newton method, which solves the couic Newton equation oldy approximately and in sonm unspecified manner. Furthermore, we show that such method is locally convergent and characterizes the order of convergence in terms of the rate of convergence of the relative residuals.
基金financially supported by the National Important and Special Project on Science and Technology(2011ZX05005-005-007HZ)the National Natural Science Foundation of China(No.41274116)
文摘In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and overthrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.
文摘In this paper, the non-quasi-Newton's family with inexact line search applied to unconstrained optimization problems is studied. A new update formula for non-quasi-Newton's family is proposed. It is proved that the constituted algorithm with either Wolfe-type or Armijotype line search converges globally and Q-superlinearly if the function to be minimized has Lipschitz continuous gradient.
文摘A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.
文摘Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear programming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems. We validate our implementation using a set of test problems from the literature, comparing different formulations and the use of the minimization solvers.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.