期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation 被引量:9
1
作者 Yinli Bi Hui Zou Chenwei Zhu 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期198-206,共9页
To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method a... To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining. 展开更多
关键词 Soil bulk density Soil infiltration rate Sandy land Vegetation type
下载PDF
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
2
作者 Amina MAZIGHI Hind MEDDI +3 位作者 Mohamed MEDDI Ishak ABDI Giovanni RAVAZZANI Mouna FEKI 《Journal of Arid Land》 SCIE CSCD 2023年第12期1474-1489,共16页
Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models t... Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error(RMSE), normalized root mean squared error(NRMSE), coefficient of correlation(CC), Nash-Sutcliffe efficiency(NSE), and Kling-Gupta efficiency(KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models(i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area. 展开更多
关键词 infiltration rate infiltration model double ring infiltrometer Mitidja Plain Novel model
下载PDF
Clogging Process Caused by Organic Particle Accumulation and Biofilm Growth in Subsurface Wastewater Infiltration System
3
作者 潘晶 于龙 王艳 《Journal of Donghua University(English Edition)》 EI CAS 2012年第2期187-192,共6页
Substrate clogging is the worst operational problem for subsurface wastewater infiltration system (SWIS), nevertheless quantitative understanding of the clogging process is currently very limited. In this study, the d... Substrate clogging is the worst operational problem for subsurface wastewater infiltration system (SWIS), nevertheless quantitative understanding of the clogging process is currently very limited. In this study, the developing process of clogging caused by organic particle accumulation and biofilm growth was investigated in two groups of lab-scale SWIS, which were fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent and filled with the same substrate made of 50% brown soil and cinder at a weight of 50%. Results showed that in glucose-fed systems the growth of biofilm in the substrate pores certainly caused remarkable reduction of effective porosity, especially for the high concentration organic wastewater, whereas its influence on infiltration rate was negligible. In comparison with biofilm growth, organic particles accumulation could rapidly reduce infiltration rate and the clogging occurred in the upper layer in starch-fed systems and the most important contribution of biofilm growth to clogging was accelerating the occurrence of clogging. 展开更多
关键词 subsurface wastewater infiltration system (SWIS) organic particle accumulation infiltration rate effective porosity
下载PDF
Effects of Organic Compound Fertilizers on Soil Water Infiltration Characteristics
4
作者 Jianqi LAN Shiyou XIE 《Agricultural Biotechnology》 CAS 2020年第4期104-110,167,共8页
In order to study the effects of organic compound fertilizers on soil water infiltration characteristics,an indoor one-dimensional soil column water infiltration test was carried out.Six soil sample treatment groups w... In order to study the effects of organic compound fertilizers on soil water infiltration characteristics,an indoor one-dimensional soil column water infiltration test was carried out.Six soil sample treatment groups were set,namely marshy solonchak(control check,CK for short),bamboo charcoal-mixed marshy solonchak,Difuyuan-mixed marshy solonchak,salined flavo-aquic soil(CK),bamboo charcoal-mixed salined flavo-aquic soil and Difuyuan-mixed salined flavo-aquic soil.After 120 min of infiltration,compared with the CK groups of marshy solonchak and salined flavo-aquic soil,the cumulative infiltration volumes of the bamboo charcoal and difuyuan treatment groups increased by -18.78%,-3.93% and 25.77%,6.53%,respectively;and the displacement increased by -18.93%,1.64% and 22.6%,12.5%,respectively.The relationship between the wetting front displacement and time conformed to a linear function.The effects of organic compound fertilizers on the initial infiltration rates of marshy solonchak and salined flavo-aquic soil were significant,and the relationship between infiltration rate and time conformed to a power function.The vertical distribution of soil moisture under the application of organic compound fertilizers showed that the moisture content changed relatively small within 5 cm of the surface soil layer,then decreased slowly within 5-10 cm of the soil layer,and decreased drastically below 10 cm of soil layer;and relative to the CK group,the application of organic compound fertilizers was beneficial to increase the moisture content of salined flavo-aquic soil.The organic compound fertilizers reduced the water infiltration capacity of marshy solonchak and improved the water infiltration capacity of salined flavo-aquic soil.Compared with Difuyuan,bamboo charcoal reduced the water infiltration capacity of marshy solonchak better and improved the water permeability of salined flavo-aquic soil more significantly. 展开更多
关键词 Organic compound fertilizer Wetting front Cumulative infiltration volume infiltration rate Soil moisture
下载PDF
Spatial distribution of Agriophyllum squarrosum Moq. (Chenopodiaceae) in the straw checkerboards at a revegetated land of the Tengger Desert, northern China 被引量:5
5
作者 HUANG Lei 《Journal of Arid Land》 SCIE CSCD 2017年第2期176-187,共12页
The present study focuses on straw checkerboards established in the Shapotou Desert Research and Experimental Station at the southeastern edge of the Tengger Desert and their effects on the species richness and the ab... The present study focuses on straw checkerboards established in the Shapotou Desert Research and Experimental Station at the southeastern edge of the Tengger Desert and their effects on the species richness and the abundance of Agriophyllum squarrosu Moq. Specifically, detailed analyses on the spatial distribution of A. squarrosum and the related soil properties were carried out at a small scale in the straw checkerboards. A. squarrosum is an excellent pioneer plant for revegetation in desert areas. However, the distribution pattern of A. squarrosum and the influencing factors have not been sufficiently delineated. The results showed that the species richness and the abundance of A. squarrosum were decreased exponentially from the border to the center of the straw checkerboards. At the micro-geomorphological scale, the soil texture, soil organic matter (SOM), soil nutrients (nitrogen, phosphorus and potassium), and soil infiltration rate in the topsoil tended to increase from the center to the border within a straw checkerboard, while soil moisture presented an opposite tendency. The soil seed bank ofA. squarrosum, soil bulk density, electrical conductivity, sand content, CaCO3 accumulation, and pH showed no significant difference (P〉0.05) between the border and the center of the straw checkerboards. Multiple linear regression analysis indicated that the abundance of A. squarrosum was mainly determined by the concentrations of SOM, nitrogen, and the infiltration rate, implying that nutrient acclimation was the optimal competitive strategy ofA. squarrosum for surviving in a barren natural environment of an arid desert region. 展开更多
关键词 Agriophyllum squarrosum seed banks soil moisture soil infiltration rate nutrient acclimation
下载PDF
Double-Ring Infiltrometer for <i>In-Situ</i>Permeability Determination of Dam Material 被引量:1
6
作者 Hans Ronnqvist 《Engineering(科研)》 2018年第6期320-328,共9页
Three types of natural soils are studied in this paper: 1) a postglacial silt, 2) a glacial till, and 3) a postglacial sand. The former two are soils from embankment dam sites in Sweden, and the latter is a soil from ... Three types of natural soils are studied in this paper: 1) a postglacial silt, 2) a glacial till, and 3) a postglacial sand. The former two are soils from embankment dam sites in Sweden, and the latter is a soil from a natural deposit situated in the Swedish east coastal region. In situ Double-ring infiltrometer (DRI) tests are compared with laboratory constant-head permeability determinations. This study shows that the DRI tests conducted on sandy-silty soils are within sufficient range to the laboratory results, to suggest that in situ near-saturated infiltration capacity may be used as a field estimate of hydraulic conductivity (permeability) for this range of soils. In situ infiltrometer testing may be the better alternative when there is difficulty in achieving representative field conditions in a laboratory setting, e.g., for widely graded soils such as glacial tills. 展开更多
关键词 Double-Ring Infiltrometer DRI Hydraulic Conductivity PERMEABILITY infiltration rate Postglacial SILT Sand GLACIAL TILL
下载PDF
Influence of soil organic matter contents on soil water characteristics of forests on east slope of Gongga Mountain
7
作者 ZHANG Bao-hua WANG Zhen-jian +3 位作者 LIU Zi-ting HUANG Ai-min TANG Qing-xin He Yu-rong 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第1期78-80,共3页
By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of... By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of SOM contents on SWC within low suctions and saturated infiltration rates were quantified. The simulated functions might be applied on regional experience forest-hydrology model. The improving function of protecting forest floor and increasing SOM contents on forest ecosystem hydrological effects were also embodied. 展开更多
关键词 Gongga Mountain Soil organic matter content Soil water content within low suction Saturated infiltration rate
下载PDF
Exploring the factors influencing the hydrological response of soil after low and high-severity fires with post-fire mulching in Mediterranean forests
8
作者 Manuel Esteban Lucas-Borja Pedro Antonio Plaza-Alvarez +2 位作者 Xiangzhou Xu Bruno Gianmarco Carra Demetrio Antonio Zema 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第1期169-182,共14页
Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and er... Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain.The pine stands of these forests were subjected to both prescribed fire and wildfire,and,in the latter case,to post-fire treatment with mulching.Moreover,simple multi-regression models are proposed to predict runoff and erosion in the experi-mental conditions.In the case of the prescribed burning,the fire had a limited impact on runoff and erosion compared to the unburned areas,due to the limited changes in soil parameters.In contrast,the wildfire increased many-fold the runoff and erosion rates,but the mulching reduced the hydrological response of the burned soils,particularly for the first two-three rainfalls after the fire.The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover,soil water repellency,and ash left by fire;the changes in water infiltration played a minor role on runoff and erosion.The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients.However,these models were less reliable for predictions of the mean erosion rates.The predictions of erosion after wildfire and mulching were excellent,while those of runoff were not satisfactory(except for the mean values).These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side.Moreover,the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils. 展开更多
关键词 Wildhre Prescribed fire Soil cover Soil properties Soil water repellency infiltration rate Surface runoff Soil loss EROSION
原文传递
Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation 被引量:4
9
作者 Qichen Hao Jingli Shao +1 位作者 Yali Cui Zhenhua Xie 《Journal of Earth Science》 SCIE CAS CSCD 2014年第3期575-586,共12页
A groundwater transient flow model was developed to evaluate the applicability and effectiveness of artificial recharge scenarios in the middle-upper part of the Yongding River alluvial fan in Beijing. These scenarios... A groundwater transient flow model was developed to evaluate the applicability and effectiveness of artificial recharge scenarios in the middle-upper part of the Yongding River alluvial fan in Beijing. These scenarios were designed by taking into account different types of recharge facilities and their infiltration rate with the Middle Route Project for South-to-North Water Transfer(MRP) as the recharge water source. The simulation results suggest that:(1) the maximum amount of artificial recharge water, for scenario I, would be 127.42×106 m3 with surface infiltration facilities; and would be243.48×106 m3 for scenario II with surface infiltration and recharge wells under the constraint of the upper limit of groundwater;(2) with preferred pattern of recharge facilities, groundwater levels in both optimized recharge scenarios would not exceed the upper limit within the given recharge period; and(3implementation of the recharge scenarios would efficiently increase the aquifer replenishment and the groundwater budget will change from-54.11×106 to 70.89×104 and 183.36×104 m3, respectively. In addition, under these two scenarios groundwater level would rise up to 30 and 34 m, respectively, without increasing the amount of evaporation. The simulation results indicate that the proposed recharge scenarios are practically feasible, and artificial recharge can also contribute to an efficient recovery of groundwater storage in Beijing. 展开更多
关键词 groundwater modeling artificial recharge infiltration rate groundwater management.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部