OBJECTIVE Cognitive inflexibility plays a critical role in the compulsive drug taking,a central characteristic of drug addictions,yet its underlying neurochemical mechanisms are not well understood.The present study e...OBJECTIVE Cognitive inflexibility plays a critical role in the compulsive drug taking,a central characteristic of drug addictions,yet its underlying neurochemical mechanisms are not well understood.The present study examined the impact of morphine withdrawal on reversal learning.METHODS Reversal learning was tested in a four-choices digging task.Some brain tissues were harvested 2 h after the behavioral experiment for the further measurement.RESULTS We found that after long-term abstinence for a month from chronic morphine exposure,mice exhibited a profound reversal learning deficit.We further found that dopamine D2 receptor(D2R)system in the frontal-striatal circuit is significantly down-regulated,at both receptor and downstream signals levels.Subsequent pharmacological experiments demonstrated that aripiprazole,a D2R partial agonist,prevented the D2R downregulation and rescued the reversal learning deficit.CONCLUSION Together,our findings provide valuable insights into the causal relationship between D2R system in the frontal-striatal circuit and the cognitive inflexibility caused by abused drugs and offer a promising possibility of an effective therapeutic intervention for drug addictions.展开更多
文摘OBJECTIVE Cognitive inflexibility plays a critical role in the compulsive drug taking,a central characteristic of drug addictions,yet its underlying neurochemical mechanisms are not well understood.The present study examined the impact of morphine withdrawal on reversal learning.METHODS Reversal learning was tested in a four-choices digging task.Some brain tissues were harvested 2 h after the behavioral experiment for the further measurement.RESULTS We found that after long-term abstinence for a month from chronic morphine exposure,mice exhibited a profound reversal learning deficit.We further found that dopamine D2 receptor(D2R)system in the frontal-striatal circuit is significantly down-regulated,at both receptor and downstream signals levels.Subsequent pharmacological experiments demonstrated that aripiprazole,a D2R partial agonist,prevented the D2R downregulation and rescued the reversal learning deficit.CONCLUSION Together,our findings provide valuable insights into the causal relationship between D2R system in the frontal-striatal circuit and the cognitive inflexibility caused by abused drugs and offer a promising possibility of an effective therapeutic intervention for drug addictions.