Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical met...Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..展开更多
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in...Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.展开更多
The development and changes in international situation after September 11 have exerted complicated influence on China’s external security environment. Therefore, how to judge current international security environmen...The development and changes in international situation after September 11 have exerted complicated influence on China’s external security environment. Therefore, how to judge current international security environment that China faces has become a very hot subject for discussion.展开更多
Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage stra...Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.展开更多
文摘Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..
基金supported by the National Natural Science Foundation of China(52009140).
文摘Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.
文摘The development and changes in international situation after September 11 have exerted complicated influence on China’s external security environment. Therefore, how to judge current international security environment that China faces has become a very hot subject for discussion.
文摘Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.