Industry and academia have been making great efforts in improving refresh rates and resolutions of display devices to meet the ever increasing needs of consumers for better visual quality.As a result,many modem displa...Industry and academia have been making great efforts in improving refresh rates and resolutions of display devices to meet the ever increasing needs of consumers for better visual quality.As a result,many modem displays have spatial and temporal resolutions far beyond the discern capability of human visual systems.Thus,leading to the possibility of using those display-eye redundancies for innovative usages.Tempo-ral/spatial psycho-visual modulation(TPVM/SPVM)was proposed to exploit those redundancies to generate multiple visual percepts for different viewers or to transmit non-visual data to computing devices without affecting normal viewing.This paper reviews the STPVM technology from both conceptual and algorithmic perspectives,with exemplary applications in multiview display,display with visible light communication,etc.Some possible future research directions are also identified.展开更多
Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especia...Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especially water resistance of the PeL materials is of significant importance for practical application,which remains a great obstacle up to date.Herein,we report a new sunlight activated PeL glass ceramic containing hexagonal Sr_(13)Al_(22)Si_(10)O_(66):Eu^(2+)crystals,which exhibits strong blue PeL and can last more than 200 h.The PeL can be charged by the full wavelengths located in AM 1.5G due to the broad distribution of traps in the crystal structure.The PeL is clearly observed by the naked eye even after 24 h upon sunlight irradiation irrespective of the weather,and the photoluminescence intensity only decreased~3.3%after storing in water for 365 d.We demonstrate its potential application for thermal and stress responsive display as well as long-term continuous security indication upon sunlight irradiation,which not only save vast energy and reduce environment pollution,but also are appropriate for outdoor usage.展开更多
To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimu...To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.展开更多
With the rapid development of digital and intelligent information systems, display of radar situation interface has become an important challenge in the field of human-computer interaction. We propose a method for the...With the rapid development of digital and intelligent information systems, display of radar situation interface has become an important challenge in the field of human-computer interaction. We propose a method for the optimization of radar situation interface from error-cognition through the mapping of information characteristics. A mapping method of matrix description is adopted to analyze the association properties between error-cognition sets and design information sets. Based on the mapping relationship between the domain of error-cognition and the domain of design information, a cross-correlational analysis is carried out between error-cognition and design information.We obtain the relationship matrix between the error-cognition of correlation between design information and the degree of importance among design information. Taking the task interface of a warfare navigation display as an example, error factors and the features of design information are extracted. Based on the results, we also propose an optimization design scheme for the radar situation interface.展开更多
The article describes the digital instrumentation and control system for unit 5 & 6 of YangJiang NPP, involving the overall I & C (instrumentation and control) structure, the basic requirements and independent ver...The article describes the digital instrumentation and control system for unit 5 & 6 of YangJiang NPP, involving the overall I & C (instrumentation and control) structure, the basic requirements and independent verification and validation. Advanced I & C systems for YangJiang NPPs have to meet increasing demands for safety and availability. Additionally, the specific requirements coming from the nuclear qualification have to be fulfilled.展开更多
We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram...We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram of real object and image of digital information are recorded in the films.The photopolymer is compared with polymer dispersed liquid crystals as holographic materials.Besides holographic diffraction efficiency of the former is little lower than that of the latter,this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field.Therefore,our study proposes a potential holographic storage material to apply in large size static 3D holographic displays,including analog hologram displays,digital hologram prints,and holographic disks.展开更多
基金would like thanks the National Natural Science Foundation of China(NSFC)for the support(Grant Nos.61901259,61831015,61771305,61927809,and U1908210)China Postdoctoral Science Foundation(BX2019208)。
文摘Industry and academia have been making great efforts in improving refresh rates and resolutions of display devices to meet the ever increasing needs of consumers for better visual quality.As a result,many modem displays have spatial and temporal resolutions far beyond the discern capability of human visual systems.Thus,leading to the possibility of using those display-eye redundancies for innovative usages.Tempo-ral/spatial psycho-visual modulation(TPVM/SPVM)was proposed to exploit those redundancies to generate multiple visual percepts for different viewers or to transmit non-visual data to computing devices without affecting normal viewing.This paper reviews the STPVM technology from both conceptual and algorithmic perspectives,with exemplary applications in multiview display,display with visible light communication,etc.Some possible future research directions are also identified.
基金The authors thank National Natural Science Foundation of China(52172164,51872270)National Key R&D Program of China(2018YFE0207700)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LZ21A040002)National Natural Science Foundation of China Joint Fund Project(U190920054).
文摘Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especially water resistance of the PeL materials is of significant importance for practical application,which remains a great obstacle up to date.Herein,we report a new sunlight activated PeL glass ceramic containing hexagonal Sr_(13)Al_(22)Si_(10)O_(66):Eu^(2+)crystals,which exhibits strong blue PeL and can last more than 200 h.The PeL can be charged by the full wavelengths located in AM 1.5G due to the broad distribution of traps in the crystal structure.The PeL is clearly observed by the naked eye even after 24 h upon sunlight irradiation irrespective of the weather,and the photoluminescence intensity only decreased~3.3%after storing in water for 365 d.We demonstrate its potential application for thermal and stress responsive display as well as long-term continuous security indication upon sunlight irradiation,which not only save vast energy and reduce environment pollution,but also are appropriate for outdoor usage.
文摘To investigate quantitatively one of the parametric effects——simultaneous color contrast on color appearance and color difference evaluation in complex displays, a set of center/surround combinations of color stimuli were displayed on a color monitor and the perceived color shifts of test targets induced by its surrounds were measured using binocular matching method while systematically varying hue difference between target and surround. When the hue difference increased, the magnitude of color shift in test target decreased, but the deflection angle of color shift vector from constant hue line increased. Regression analyses of experimental data indicated that the relationship between hue angle difference and the magnitude of perceived color shifts could be described quantitatively by an exponential function, and a linear function could describe quantitative relationship between hue angle difference and deflection angle of color shift vector from constant hue line.
基金supported by Jiangsu Province Nature Science Foundation of China (BK20221490)the Key Fundamental Research Funds for the Central Universities (30920041114)+2 种基金the National Natural Science Foundation of China (52175469,71601068)the Key Research and Development (Social Development) Project of Jiangsu Province(BE2019647)Jiangsu Province Social Science Foundation of China (20YSB013)。
文摘With the rapid development of digital and intelligent information systems, display of radar situation interface has become an important challenge in the field of human-computer interaction. We propose a method for the optimization of radar situation interface from error-cognition through the mapping of information characteristics. A mapping method of matrix description is adopted to analyze the association properties between error-cognition sets and design information sets. Based on the mapping relationship between the domain of error-cognition and the domain of design information, a cross-correlational analysis is carried out between error-cognition and design information.We obtain the relationship matrix between the error-cognition of correlation between design information and the degree of importance among design information. Taking the task interface of a warfare navigation display as an example, error factors and the features of design information are extracted. Based on the results, we also propose an optimization design scheme for the radar situation interface.
文摘The article describes the digital instrumentation and control system for unit 5 & 6 of YangJiang NPP, involving the overall I & C (instrumentation and control) structure, the basic requirements and independent verification and validation. Advanced I & C systems for YangJiang NPPs have to meet increasing demands for safety and availability. Additionally, the specific requirements coming from the nuclear qualification have to be fulfilled.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474194,11004037,and 61101176)the Natural Science Foundation of Shanghai,China(Grant No.14ZR1415500)
文摘We present holographic storage of three-dimensional(3D) images and data in a photopolymer film without any applied electric field.Its absorption and diffraction efficiency are measured,and reflective analog hologram of real object and image of digital information are recorded in the films.The photopolymer is compared with polymer dispersed liquid crystals as holographic materials.Besides holographic diffraction efficiency of the former is little lower than that of the latter,this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field.Therefore,our study proposes a potential holographic storage material to apply in large size static 3D holographic displays,including analog hologram displays,digital hologram prints,and holographic disks.