The objective of this paper is to introduce three semi-automated approaches for ontology mapping using relatedness analysis techniques. In the architecture, engineering, and construction (AEC) industry, there exist a ...The objective of this paper is to introduce three semi-automated approaches for ontology mapping using relatedness analysis techniques. In the architecture, engineering, and construction (AEC) industry, there exist a number of ontological standards to describe the semantics of building models. Although the standards share similar scopes of interest, the task of comparing and mapping concepts among standards is challenging due to their differences in terminologies and perspectives. Ontology mapping is therefore necessary to achieve information interoperability, which allows two or more information sources to exchange data and to re-use the data for further purposes. The attribute-based approach, corpus-based approach, and name-based approach presented in this paper adopt the statistical relatedness analysis techniques to discover related concepts from heterogeneous ontologies. A pilot study is conducted on IFC and CIS/2 ontologies to evaluate the approaches. Preliminary results show that the attribute-based approach outperforms the other two approaches in terms of precision and F-measure.展开更多
基金the US National Science Foundation, Grant No. CMS-0601167
文摘The objective of this paper is to introduce three semi-automated approaches for ontology mapping using relatedness analysis techniques. In the architecture, engineering, and construction (AEC) industry, there exist a number of ontological standards to describe the semantics of building models. Although the standards share similar scopes of interest, the task of comparing and mapping concepts among standards is challenging due to their differences in terminologies and perspectives. Ontology mapping is therefore necessary to achieve information interoperability, which allows two or more information sources to exchange data and to re-use the data for further purposes. The attribute-based approach, corpus-based approach, and name-based approach presented in this paper adopt the statistical relatedness analysis techniques to discover related concepts from heterogeneous ontologies. A pilot study is conducted on IFC and CIS/2 ontologies to evaluate the approaches. Preliminary results show that the attribute-based approach outperforms the other two approaches in terms of precision and F-measure.