本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字...本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字长法(Minimum Dscription Lengh,MDL).基于信息理论标准(ITC)的MDL方法在低SNR条件下获得比GDE更好的性能,但是它无法处理包含有色噪声的信号.GDE方法虽然可以克服有色噪声的影响,但是其在低SNR下的性能欠佳.基于上述考虑,本文对这两种方法进行了改进.采用对角加载技术改善MDL方法的性能,并引入Jackknife切法优化数据协方差矩阵,以提高GDE方法的性能.模拟实验结果表明:本文提出的方法使原有方法的性能得到很大改善.展开更多
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith...In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.展开更多
文摘本文对单通道接收信号的源数估计方法进行了研究,提出了对现有方法的改进措施.将单通道数据通过延迟处理转换为多通道形式,然后引入阵列信号处理中的信源数估计算法,如盖氏圆盘估计法(Gerschgorin’s Disk Estimation,GDE)和最小描述字长法(Minimum Dscription Lengh,MDL).基于信息理论标准(ITC)的MDL方法在低SNR条件下获得比GDE更好的性能,但是它无法处理包含有色噪声的信号.GDE方法虽然可以克服有色噪声的影响,但是其在低SNR下的性能欠佳.基于上述考虑,本文对这两种方法进行了改进.采用对角加载技术改善MDL方法的性能,并引入Jackknife切法优化数据协方差矩阵,以提高GDE方法的性能.模拟实验结果表明:本文提出的方法使原有方法的性能得到很大改善.
基金Research partially supported by National Natural Science Foundation of China (Grant No. 10471136) Ph.D. Program Foundation of the Ministry of Education of China, and Special Foundations of the Chinese Academy of Science and USTC.
基金Projects(61362018,61861019)supported by the National Natural Science Foundation of ChinaProject(1402041B)supported by the Jiangsu Province Postdoctoral Scientific Research Project,China+1 种基金Project(16A174)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject([2016]283)supported by the Research Study and Innovative Experiment Project of College Students,China
文摘In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method.