This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth obser...This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.展开更多
The frequentist model averaging(FMA)and the focus information criterion(FIC)under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claes kens...The frequentist model averaging(FMA)and the focus information criterion(FIC)under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claes kens in 2003.One inconvenience,however,of the existing works is that they usually require the involved criterion function to be twice differentiable which thus prevents a direct application to the case of quantile regression(QR).This as well as some other intrinsic merits of QR motivate us to study the FIC and FMA in a locally misspecified linear QR model.Specifically,we derive in this paper the explicit asymptotic risk expression for a general submodel-based QR estimator of a focus parameter.Then based on this asymptotic result,we develop the FIC and FMA in the current setting.Our theoretical development depends crucially on the convexity of the objective function,which makes possible to establish the asymptotics based on the existing convex stochastic process theory.Simulation studies are presented to illustrate the finite sample performance of the proposed method.The low birth weight data set is analyzed.展开更多
基金supported by National Basic Research Program of China(Grant No. 2012CB719906)
文摘This paper reviewed the developments of the last ten years in the field of international high-resolution earth observation, and introduced the developmental status and plans for China's high-resolution earth observation program. In addition, this paper expounded the transformation mechanism and procedure from earth observation data to geospatial information and geographical knowledge, and examined the key scientific and technological issues, including earth observation networks, high-precision image positioning, image understanding, automatic spatial information extraction, and focus services. These analyses provide a new impetus for pushing the application of China's high-resolution earth observation system from a "quantity" to "quality" change, from China to the world, from providing products to providing online service.
基金This paper is supported by the National Natural Science Foundation of China(No.11771049).
文摘The frequentist model averaging(FMA)and the focus information criterion(FIC)under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claes kens in 2003.One inconvenience,however,of the existing works is that they usually require the involved criterion function to be twice differentiable which thus prevents a direct application to the case of quantile regression(QR).This as well as some other intrinsic merits of QR motivate us to study the FIC and FMA in a locally misspecified linear QR model.Specifically,we derive in this paper the explicit asymptotic risk expression for a general submodel-based QR estimator of a focus parameter.Then based on this asymptotic result,we develop the FIC and FMA in the current setting.Our theoretical development depends crucially on the convexity of the objective function,which makes possible to establish the asymptotics based on the existing convex stochastic process theory.Simulation studies are presented to illustrate the finite sample performance of the proposed method.The low birth weight data set is analyzed.