期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of system structure and information processing mechanism for cognitive skywave over-the-horizon radar 被引量:8
1
作者 Xia Wu Jianwen Chen Kun Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期797-806,共10页
Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo... Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten. 展开更多
关键词 cognitive radar skywave over-the-horizon radar system structure intelligence information processing information fusion target detection
下载PDF
Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion 被引量:2
2
作者 Ze Liu Yingfeng Cai +1 位作者 Hai Wang Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期69-80,共12页
Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,... Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution.In order to compensate for the low detection accuracy,incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR,in this paper,an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles.By employing the Unscented Kalman Filter,Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle.Finally,the real vehicle test under various driving environment scenarios is carried out.The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy.Compared with a single sensor,it has obvious advantages and can improve the intelligence level of autonomous cars. 展开更多
关键词 Autonomous vehicle radar and LiDAR information fusion Unscented Kalman filter Target detection and tracking
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部