For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated ...Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated inputs.However,there is limited labelled text available,making the acquirement process of the fully annotated input costly and labour-intensive.Lately,semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods.Nevertheless,some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training.Literature also shows that not all unlabelled instances are equally useful;thus identifying the informative unlabelled instances is beneficial in training a semi-supervised model.To achieve this,an informative score is proposed and incorporated into semisupervised sentiment classification.The evaluation is performed on a semisupervised method without an informative score and with an informative score.By using the informative score in the instance selection strategy to identify informative unlabelled instances,semi-supervised models perform better compared to models that do not incorporate informative scores into their training.Although the performance of semi-supervised models incorporated with an informative score is not able to surpass the supervised models,the results are still found promising as the differences in performance are subtle with a small difference of 2%to 5%,but the number of labelled instances used is greatly reduced from100%to 40%.The best finding of the proposed instance selection strategy is achieved when incorporating an informative score with a baseline confidence score at a 0.5:0.5 ratio using only 40%labelled data.展开更多
供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供...供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。展开更多
随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模...随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模块开展了研究。首先,综合隔震支座应用情况和力学特性,可将其分为橡胶隔震支座、滑移摩擦隔震支座和其他类型隔震支座,据此提出了隔震支座BIM快速建模模块基本架构;随后,基于Revit和Visual Studio平台开发了三类隔震支座BIM模型的快速建模功能,并实现了连接节点参数化建模和支座批量/手动布置的操作功能;最后,开展了某化工公司的库房隔震加固项目的隔震层BIM模型建模实践,结果表明:利用快速建模模块可将隔震层BIM建模操作从7个步骤降低至2个步骤,且使用过程中对隔震支座构造细节的认知要求相对较低。同时,建成后的BIM模型与实际工程在建筑信息的多个方面具有较好的一致性。相关研究可为建筑和桥梁隔震工程的BIM建模提供参考和借鉴。展开更多
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.
基金This research is supported by Fundamental Research Grant Scheme(FRGS),Ministry of Education Malaysia(MOE)under the project code,FRGS/1/2018/ICT02/USM/02/9 titled,Automated Big Data Annotation for Training Semi-Supervised Deep Learning Model in Sentiment Classification.
文摘Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated inputs.However,there is limited labelled text available,making the acquirement process of the fully annotated input costly and labour-intensive.Lately,semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods.Nevertheless,some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training.Literature also shows that not all unlabelled instances are equally useful;thus identifying the informative unlabelled instances is beneficial in training a semi-supervised model.To achieve this,an informative score is proposed and incorporated into semisupervised sentiment classification.The evaluation is performed on a semisupervised method without an informative score and with an informative score.By using the informative score in the instance selection strategy to identify informative unlabelled instances,semi-supervised models perform better compared to models that do not incorporate informative scores into their training.Although the performance of semi-supervised models incorporated with an informative score is not able to surpass the supervised models,the results are still found promising as the differences in performance are subtle with a small difference of 2%to 5%,but the number of labelled instances used is greatly reduced from100%to 40%.The best finding of the proposed instance selection strategy is achieved when incorporating an informative score with a baseline confidence score at a 0.5:0.5 ratio using only 40%labelled data.
文摘供热负荷预测是指导供热系统调控的重要手段。提高供热负荷预测精度十分重要,针对机器学习中输出目标的分解预测,提出了一种基于季节和趋势分解(seasonal and trend decomposition using loess,STL)的供热负荷预测方法,构建了适用于供热负荷预测的输出目标。首先利用STL算法将供热负荷时间序列数据分解为趋势分量、周期分量和残差分量,分别训练Informer、BiLSTM和XGB模型,将构建好的3个分量预测模型的输出叠加作为初步预测结果,分析误差序列,以BiLSTM预测误差提高模型精度,构建出STL-Informer-BiLSTM-XGB预测模型。将上述模型与常用预测模型进行对比,结果表明所构建的STL-Informer-BiLSTM-XGB模型的MAPE、MAE和MSE分别为0.871%、96.18和13202.2,预测效果最优,验证了所提出的方法具有较高的供热负荷预测精度。
文摘随着隔震技术的推广应用以及建筑业信息化水平的持续提升,在隔震工程中对隔震层建筑信息模型(building information modeling, BIM)建模的需求逐渐增长,然而针对性的研究工作相对较少。为此,围绕隔震支座BIM模型的高效建模方法和应用模块开展了研究。首先,综合隔震支座应用情况和力学特性,可将其分为橡胶隔震支座、滑移摩擦隔震支座和其他类型隔震支座,据此提出了隔震支座BIM快速建模模块基本架构;随后,基于Revit和Visual Studio平台开发了三类隔震支座BIM模型的快速建模功能,并实现了连接节点参数化建模和支座批量/手动布置的操作功能;最后,开展了某化工公司的库房隔震加固项目的隔震层BIM模型建模实践,结果表明:利用快速建模模块可将隔震层BIM建模操作从7个步骤降低至2个步骤,且使用过程中对隔震支座构造细节的认知要求相对较低。同时,建成后的BIM模型与实际工程在建筑信息的多个方面具有较好的一致性。相关研究可为建筑和桥梁隔震工程的BIM建模提供参考和借鉴。