期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs 被引量:1
1
作者 LI Jiqiang ZHAO Guanqun +5 位作者 QI Zhilin YIN Bingyi XU Xun FANG Feifei YANG Shenyao QI Guixue 《Petroleum Exploration and Development》 CSCD 2021年第4期968-977,共10页
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of... Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles. 展开更多
关键词 gas storage rebuilt from gas reservoirs multi-cycle injection and production reservoir stress sensitivity injection and production capacity gas storage layer selection
下载PDF
Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia 被引量:1
2
作者 Yu-kun Sun Feng Liu +1 位作者 Huajun Wang Xin-zhi Gao 《Journal of Groundwater Science and Engineering》 2022年第2期196-208,共13页
Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring p... Inner Mongolia is abundant in geothermal resources,but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces.In this paper,a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin,Eastern Inner Mongolia was investigated,a threedimensional geological model of a pair of production and injection well was established,and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data.The effects of flow rates,the direction of wells,injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed.The results show that considering a 30-year operation period and a production rate from 90 m^(3)/h to 110 m^(3)/h,the optimum well spacing can be increased from 225 m to 245 m,with an average value of 235 m.With the decrease of the injection temperature,the cold front of the injection water has an increasing influence on the temperature in the production well.A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability.In addition,the location of the injection well should be arranged in the downstream of the natural flow field.The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells,thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources. 展开更多
关键词 Geothermal well Optimum well spacing Production and injection Numerical simulation Heat breakthrough
下载PDF
An analysis method of injection and production dynamic transient flow in a gas field storage facility
3
作者 WANG Jieming LI Chun +4 位作者 SUN Junchang TANG Ligen ZHONG Rong LIU Xianshan ZHENG Shaojing 《Petroleum Exploration and Development》 CSCD 2022年第1期179-190,共12页
A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing metho... A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results. 展开更多
关键词 gas field storage facility injection and production performance alternate working conditions transient flow analysis theoretical chart
下载PDF
Large-scale physical simulation of injection and production of hot dry rock in Gonghe Basin,Qinghai Province,China
4
作者 ZHAO Peng ZHU Haiyan +4 位作者 LI Gensheng CHEN Zuo CHEN Shijie SHANGGUAN Shuantong QI Xiaofei 《Petroleum Exploration and Development》 SCIE 2024年第3期741-752,共12页
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and... Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock. 展开更多
关键词 hot dry rock simulation of injection and production heat extraction performance conductivity dominant channel fluid leak-off
下载PDF
Steam Flooding after Steam Soak in Heavy Oil Reservoirs through Extended-reach Horizontal Wells 被引量:1
5
作者 Ning Zhengfu Liu Huiqing Zhang Hongling 《Petroleum Science》 SCIE CAS CSCD 2007年第2期71-74,共4页
This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special pac... This paper presents a new development scheme of simultaneous injection and production in a single horizontal well drilled for developing small block reservoirs or offshore reservoirs. It is possible to set special packers within the long completion horizontal interval to establish an injection zone and a production zone. This method can also be used in steam flooding after steam soak through a horizontal well. Simulation results showed that it was desirable to start steam flooding after six steam soaking cycles and at this time the oil/steam ratio was 0.25 and oil recovery efficiency was 23.48%. Steam flooding performance was affected by separation interval and steam injection rate. Reservoir numerical simulation indicated that maximum oil recovery would be achieved at a separation section of 40-50 m at steam injection rate of 100-180 t/d; and the larger the steam injection rate, the greater the water cut and pressure difference between injection zone and production zone. A steam injection rate of 120 t/d was suitable for steam flooding under practical injection-production conditions. All the results could be useful for the guidance of steam flooding projects. 展开更多
关键词 Heavy oil horizontal well steam soak steam flooding single well injection and production optimized design
下载PDF
Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China 被引量:1
6
作者 DONG Yuexia HUANG Hongxiang +5 位作者 REN Lu LI Hongda DU Zhiqiang E Junjie WANG Qi ZHANG Xiaoming 《Petroleum Exploration and Development》 CSCD 2021年第3期775-786,共12页
Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao For... Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is(600–2000)×10^(-3) μm^(2), and the temperature of thermal reservoir is 70–110 ℃. The formation has total geothermal resources of 13.79×10^(18) J, equivalent to 4.70×10^(8) t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×10^(4) m^(2) was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×10^(4) t of standard coal and a reduction of 15.87×10^(4) t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of "balanced production and injection in the same layer". It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China. 展开更多
关键词 geothermal field sandstone thermal reservoir geothermal heating balanced production and injection in the same layer Bohai Bay Basin geothermal resources
下载PDF
Permeability damage micro-mechanisms and stimulation of low-permeability sandstone reservoirs: A case study from Jiyang Depression, Bohai Bay Basin, China 被引量:1
7
作者 ZHANG Shoupeng FANG Zhengwei 《Petroleum Exploration and Development》 2020年第2期374-382,共9页
According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separati... According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test. 展开更多
关键词 Jiyang Depression low permeability sandstone permeability damage structural element DISSOLUTION separation reservoir stimulation increasing production and injection
下载PDF
Simulation of pore space production law and capacity expansion mechanism of underground gas storage
8
作者 LIU Tao LI Yiqiang +7 位作者 DING Guosheng WANG Zhengmao SHI Lei LIU Zheyu TANG Xiang CAO Han CAO Jinxin HUANG Youqing 《Petroleum Exploration and Development》 CSCD 2022年第6期1423-1429,共7页
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie... One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity. 展开更多
关键词 gas reservoir-type underground gas storage multi-cycle injection and production injection-production equilibrium time pore utilization efficiency effective gas storage volume
下载PDF
ON THE CENTRAL LIMIT THEOREM IN PRODUCT SPACES
9
作者 SU ZHONGGEN 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第4期367-378,共12页
Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective... Suppose that E and F are separable Banach spaces, X and Y are independent symmetric E and F-valued random vectors respectively. This paper is devoted to the study of the central limit theorem for X Y in the injective and projective tensor product spaces E F and E F. Special attention is paid to l2 l2. In addition, two counter-examples are given. 展开更多
关键词 Central limit theorem injective and projective tensor product spaces Gaussian process.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部