Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First...Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.展开更多
This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach numbe...This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach number.Generally,the Mach number independence principle becomes effective from M=10 and above.The Ogive nose is obtained through a circular arc on the cone surface.Accordingly,the following arc slopes are consideredλ=5,10,15,−5,−10,and−15.It is found that the stability derivatives decrease due to the growth inλfrom 5 to 15 and vice versa.Forλ=5 and 10,the damping derivative declines with an increase inλfrom 5 to 10.Yet,for the damping derivatives,the minimum location remains at a pivot position,h=0.75 for large values ofλ.Hence,whenλ=−15,the damping derivatives are independent of the cone angles for most pivot positions except in the early twenty percent of the leading edge.展开更多
When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necess...When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.展开更多
The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage dev...The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.展开更多
BACKGROUND: The prognostic factors related to lymph node involvement [lymph node status, the number of positive lymph nodes, lymph node ratio (LNR)] and the number of nodes evaluated in patients with pancreatic ade...BACKGROUND: The prognostic factors related to lymph node involvement [lymph node status, the number of positive lymph nodes, lymph node ratio (LNR)] and the number of nodes evaluated in patients with pancreatic adenocarcinoma after pancreatectomy are poorly defined. METHODS: A total of 167 patients who had undergone resection of pancreatic adenocarcinoma from February 2010 to August 2011 were included in this study. Histological examination was performed to evaluate the tumor differentiation and lymph node involvement. Univariate and multivariate analyses were made to determine the relationship between the variables related to nodal involvement and the number of nodes and survival. RESULTS: The median number of total nodes examined was 10 (range 0-44) for the entire cohort. The median number of total nodes examined in node-negative (pN0) patients was similar to that in node-positive (pN1) patients. Patients with pN1 diseases had significantly worse survival than those with pN0 ones (P=0.000). Patients with three or more positive nodes had a poorer prognosis compared with those with the negative nodes (P=0.000). The prognosis of the patients with negative nodes was similar to that of those with one to two positive nodes (P=0.114). The median survival of patients with an LNR ≥0.4 was shorter than that of patients with an LNR 〈0.4 in the pN1 cohort (P=0.014). No significance was found between the number of total nodes examined and the prognosis, regardless of the cutoff of 10 or 12 and in the entire cohort or the pN0 and pN1 groups. Based on the multivariate analysis of the entire cohort and the pN1 group, the nodal status, the number of positive nodes and the LNR were all associated with survival. CONCLUSIONS: In addition to the nodal status, the number of positive nodes and the LNR can serve as comprehensive factors for the evaluation of nodal involvement. This approach may be more effective for predicting the survival of patients with pancreatic adenocarcinoma after pancreatectomy.展开更多
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angl...Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.展开更多
The organic Rankine cycle is widely used in industrial waste heat, engine waste heat and other waste heat recovery applications, and as a key component of the system, it affects the efficiency and output power of the ...The organic Rankine cycle is widely used in industrial waste heat, engine waste heat and other waste heat recovery applications, and as a key component of the system, it affects the efficiency and output power of the system. In this paper, a centripetal turbine is designed for the organic Rankine cycle, using vehicle exhaust gas as the heat source. Numerical simulations are performed to analyze the effect of the ratio of the number of guide vane blades to the number of impeller blades (vane number ratio) on the turbine performance and flow field. The results show that the effect of the number of impeller blades on the turbine entropy efficiency, the average exit velocity and the temperature of the guiding grate becomes less and less as the ratio of the number of blades increases. The optimum turbine performance is obtained when the number of impeller blades and the ratio of the number of blades are 17 and 1.5882, respectively, and the expansion performance of the guide impeller is improved and the isentropic efficiency of the turbine is improved by 3.84% compared with the preliminary number of blades.展开更多
The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hy...The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hydraulic transformer is realized by designing more than three ports on the distribution plate,and the voltage transformation characteristics of the integrated hydraulic transformer with different port numbers are different.In this paper,the influence of port number on the pressure ratio of integrated hydraulic transformer was studied,and the pressure ratio characteristics of 3⁃ports,4⁃ports,and 5⁃ports integrated hydraulic transformer were obtained,and an experimental platform was built for experimental verification,which shows that the simulation results are consistent with the experimental results and provides a theoretical basis for the design of integrated hydraulic transformer.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
文摘Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.
文摘This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach number.Generally,the Mach number independence principle becomes effective from M=10 and above.The Ogive nose is obtained through a circular arc on the cone surface.Accordingly,the following arc slopes are consideredλ=5,10,15,−5,−10,and−15.It is found that the stability derivatives decrease due to the growth inλfrom 5 to 15 and vice versa.Forλ=5 and 10,the damping derivative declines with an increase inλfrom 5 to 10.Yet,for the damping derivatives,the minimum location remains at a pivot position,h=0.75 for large values ofλ.Hence,whenλ=−15,the damping derivatives are independent of the cone angles for most pivot positions except in the early twenty percent of the leading edge.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan Universitysupport of Prince Sultan University in paying the article processing charges(APC)for this publication.
文摘When better fuel-air mixing in the combustion chamber or a reduction in base drag are required in vehicles,rockets,and aeroplanes,the base pressure control is activated.Controlling the base pressure and drag is necessary in both scenarios.In this work,semi-circular ribs with varying diameters(2,4,and 6 mm)positioned at six distinct positions(0.5D,1D,1.5D,2D,3D,and 4D)inside a square duct with a side of 15 mm are proposed as an efficient way to apply the passive control technique.In-depth research is done on optimising rib size for various rib sites.According to this study,the base pressure rises as rib height increases.Furthermore,the optimal location for the semi-circular ribs with a diameter of 2 mm is at 0.5D.The 1D location appears to be optimal for the 4 mm size as well.For the 6 mm size,however,the 4D position fills this function.
文摘The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.
基金supported in part by grants from the Sino-German Center (GZ857)Science Foundation of Shanghai (13ZR1407500)+2 种基金Shanghai Rising Star Program (12QH1400600 and 14QA1400900)Fudan University Young Investigator Promoting Program (20520133403)the National Science Foundation of China (81101807, 81001058, 81372649, 81372653 and 81172276)
文摘BACKGROUND: The prognostic factors related to lymph node involvement [lymph node status, the number of positive lymph nodes, lymph node ratio (LNR)] and the number of nodes evaluated in patients with pancreatic adenocarcinoma after pancreatectomy are poorly defined. METHODS: A total of 167 patients who had undergone resection of pancreatic adenocarcinoma from February 2010 to August 2011 were included in this study. Histological examination was performed to evaluate the tumor differentiation and lymph node involvement. Univariate and multivariate analyses were made to determine the relationship between the variables related to nodal involvement and the number of nodes and survival. RESULTS: The median number of total nodes examined was 10 (range 0-44) for the entire cohort. The median number of total nodes examined in node-negative (pN0) patients was similar to that in node-positive (pN1) patients. Patients with pN1 diseases had significantly worse survival than those with pN0 ones (P=0.000). Patients with three or more positive nodes had a poorer prognosis compared with those with the negative nodes (P=0.000). The prognosis of the patients with negative nodes was similar to that of those with one to two positive nodes (P=0.114). The median survival of patients with an LNR ≥0.4 was shorter than that of patients with an LNR 〈0.4 in the pN1 cohort (P=0.014). No significance was found between the number of total nodes examined and the prognosis, regardless of the cutoff of 10 or 12 and in the entire cohort or the pN0 and pN1 groups. Based on the multivariate analysis of the entire cohort and the pN1 group, the nodal status, the number of positive nodes and the LNR were all associated with survival. CONCLUSIONS: In addition to the nodal status, the number of positive nodes and the LNR can serve as comprehensive factors for the evaluation of nodal involvement. This approach may be more effective for predicting the survival of patients with pancreatic adenocarcinoma after pancreatectomy.
基金supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.
文摘The organic Rankine cycle is widely used in industrial waste heat, engine waste heat and other waste heat recovery applications, and as a key component of the system, it affects the efficiency and output power of the system. In this paper, a centripetal turbine is designed for the organic Rankine cycle, using vehicle exhaust gas as the heat source. Numerical simulations are performed to analyze the effect of the ratio of the number of guide vane blades to the number of impeller blades (vane number ratio) on the turbine performance and flow field. The results show that the effect of the number of impeller blades on the turbine entropy efficiency, the average exit velocity and the temperature of the guiding grate becomes less and less as the ratio of the number of blades increases. The optimum turbine performance is obtained when the number of impeller blades and the ratio of the number of blades are 17 and 1.5882, respectively, and the expansion performance of the guide impeller is improved and the isentropic efficiency of the turbine is improved by 3.84% compared with the preliminary number of blades.
基金the National Key Research and Development Plan Projects(Grant No.2018YFB2001200)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJB460026,19KJA140002)the Six Talent Peak Training Projects in Jiangsu Province(Grant No.JXQC-36).
文摘The integrated hydraulic transformer has a compact structure and no throttling loss in the process of pressure regulation.It is widely used in the common pressure rail hydrostatic transmission system.The integrated hydraulic transformer is realized by designing more than three ports on the distribution plate,and the voltage transformation characteristics of the integrated hydraulic transformer with different port numbers are different.In this paper,the influence of port number on the pressure ratio of integrated hydraulic transformer was studied,and the pressure ratio characteristics of 3⁃ports,4⁃ports,and 5⁃ports integrated hydraulic transformer were obtained,and an experimental platform was built for experimental verification,which shows that the simulation results are consistent with the experimental results and provides a theoretical basis for the design of integrated hydraulic transformer.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.