期刊文献+
共找到15,404篇文章
< 1 2 250 >
每页显示 20 50 100
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
1
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
2
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
3
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury
4
作者 Meizeng Zhang Lihua Wang Yunliang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期140-142,共3页
BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the path... BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation. OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD) apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury. DESIGN: A randomized control animal experiment SETTING : Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences. METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phy- cocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after cerebral ischemia reperfusion was detected with TUNEL technique. SOD expression was detected with immunohistochemical technique.③ The intergroup difference was compared with the ttest. MAIN OUTCOME MEASURES: The apoptosis of the nerve cells and SOD expression were mainly observed in each group. RESULTS: Finally, 52 rats were involved in the analysis of results. ① Number of apoptotic cells: In the sham-operated group, a few apoptotic cells could be observed in brain tissue. The apoptotic cells at each time point in the control group and treatment group were obviously more than those in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of apoptotic cells at 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 6 hours, 7 and 14 days were similar to those in the control group. ② Number of SOD positive cells: In the sham-operated group, there was weak expression of SOD in brain tissue, and the positive cells were extremely few, the positive cells at each time point were significantly more in the control group and treatment group than in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of positive cells at 6 and 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 7-14 days were similar to those in the control group. ③ Cellular forms: In the control group, the karyopyknosis occurred in the nerve cells, which were irregularly distributed, nucleolus disappeared, and some scattered cell fragments were observed. The forms of the nerve cells in the treatment group were generally normal. CONCLUSION : Phycocyanin plays a neuroprotective role in cerebral ischemia reperfusion injury by activating the SOD expression and inhibiting apoptosis. 展开更多
关键词 Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury
下载PDF
Lactiplantibacillus plantarum AR113 alleviates microbiota dysbiosis of tongue coating and cerebral ischemia/reperfusion injury in rat
5
作者 Zhiqiang Xiong Gang Liu +5 位作者 Ling Fang Xiuming Li Yongjun Xia Guangqiang Wang Xin Song Lianzhong Ai 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2132-2140,共9页
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r... Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control. 展开更多
关键词 Stroke cerebral ischemia/reperfusion Tongue coating Lactiplantibacillus plantarum AR113 Probiotic intervention
下载PDF
Cav3.2 channel regulates cerebral ischemia/reperfusion injury:a promising target for intervention
6
作者 Feibiao Dai Chengyun Hu +7 位作者 Xue Li Zhetao Zhang Hongtao Wang Wanjun Zhou Jiawu Wang Qingtian Geng Yongfei Dong Chaoliang Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2480-2487,共8页
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ... Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury. 展开更多
关键词 CALCINEURIN Cav3.2 channel cerebral ischemia/reperfusion hippocampus HYPOXIA/REOXYGENATION inflammatory response nuclear factor of activated T cells 3 oxidative stress primary hippocampal neurons stroke
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:1
7
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
8
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
9
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury 被引量:20
10
作者 Chunlin Yan Ji Zhang +2 位作者 Shu Wang Guiping Xue Yong Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第22期2030-2038,共9页
Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases ar... Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 pg/kg rutae- carpine were given to mice via intrapedtoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae- carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu- rological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice. 展开更多
关键词 neural regeneration traditional Chinese medicine RUTAECARPINE cerebral ischemia reperfusion learning and memory infarct volume free radical glutathione peroxidase superoxide dismutase MALONDIALDEHYDE grants-supported paper NEUROREGENERATION
下载PDF
Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury 被引量:1
11
作者 Xiaodan Wang Jinming Xu +2 位作者 Jieqin Gong Hui Shen Xiaoping Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期64-69,共6页
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated lo... Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors. 展开更多
关键词 neural regeneration brain injury cerebral ischemia and reperfusion NETRIN-1 uncoordinatedlocomotion-5 homolog B deleted in colorectal cancer neuron brain injury grant-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Vav1 promotes inflammation and neuronal apoptosis in cerebral ischemia/reperfusion injury by upregulating microglial and NLRP3 inflammasome activation 被引量:1
12
作者 Jing Qiu Jun Guo +3 位作者 Liang Liu Xin Liu Xianhui Sun Huisheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2436-2442,共7页
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua... Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome. 展开更多
关键词 apoptosis cerebral ischemia/reperfusion inflammatory cytokines microglia microglial activation middle cerebral artery occlusion neuroprotection NLRP3 inflammasome oxygen-glucose deprivation/reoxygenation Vav1
下载PDF
Influence of ginkgolide combined with edaravone on the brain function of elderly patients with acute cerebral infarction and its preventive effect on ischemia reperfusion injury
13
作者 Ju-Rong Li 《Journal of Hainan Medical University》 2017年第24期121-125,共5页
Objective: To explore the influence of ginkgolide combined with edaravone on the brain function of elderly patients with acute cerebral infarction and its preventive effect on ischemia reperfusion injury. Methods: A t... Objective: To explore the influence of ginkgolide combined with edaravone on the brain function of elderly patients with acute cerebral infarction and its preventive effect on ischemia reperfusion injury. Methods: A total of 126 patients with acute cerebral infarction who were treated in Dazhou Central Hospital between February 2016 and May 2017 were divided into the control group (n=67) and ginkgolide group (n=59) according to different therapies. Control group received routine intravenous thrombolysis + edaravone therapy, and ginkgolide group received routine intravenous thrombolysis + edaravone + ginkgolide therapy. The differences in brain function and nerve ischemia reperfusion injury extent were compared between the two groups. Results: At T1 and T2, serum nerve function indexes NT-proBNP and NSE levels of ginkgolide group were lower than those of control group whereas BDNF levels were higher than those of control group;serum inflammatory mediators MCP-1, NF-κB, CRP and TNF-α levels were lower than those of control group;serum apoptosis molecules caspase-3 and Bax levels were lower than those of control group whereas Bcl-2 levels were higher than those of control group. Conclusion: Ginkgolide combined with edaravone therapy on the basis of intravenous thrombolysis can effectively optimize the brain function and alleviate the ischemia reperfusion injury caused by inflammatory response and apoptosisis in elderly patients with acute cerebral infarction. 展开更多
关键词 Acute cerebral INFARCTION GINKGOLIDE EDARAVONE Brain function ischemia reperfusion injury
下载PDF
Effect of thyroid hormone on myocardial and cerebral ischemia reperfusion injury in valve replacement under cardiopulmonary bypass
14
作者 Qing-Bin Wei Fei Xie +1 位作者 Shi-Li Wang Gang Li 《Journal of Hainan Medical University》 2017年第13期79-82,共4页
Objective:To study the effect of thyroid hormone (euthyrox) on myocardial and cerebral ischemia reperfusion injury in valve replacement under cardiopulmonary bypass.Methods:A total of 76 patients who received valve re... Objective:To study the effect of thyroid hormone (euthyrox) on myocardial and cerebral ischemia reperfusion injury in valve replacement under cardiopulmonary bypass.Methods:A total of 76 patients who received valve replacement under cardiopulmonary bypass in our hospital between January 2013 and December 2016 were collected and divided into control group (n=38) and observation group (n=38) according to random number table. Observation group took euthyrox orally 1 week before surgery, control group took vitamin C tablets orally at the same point in time, and both therapies lasted for 1 week. Before taking medicine and after cardiopulmonary bypass (before end of surgery), serum levels of myocardial enzyme spectrum indexes and nerve injury indexes were compared between the two groups of patients. Results: Before taking medicine, differences in the serum levels of myocardial enzyme spectrum indexes and nerve injury indexes were not statistically significant between the two groups of patients. After cardiopulmonary bypass, serum myocardial enzyme spectrum indexes cTnT, CK-MB,α-HBD and LDH levels in observation group were lower than those in control group;serum nerve injury indexes NSE, S100B and GFAP levels were lower than those in control group while bFGF level was higher than that in control group.Conclusion: Euthyrox intervention in valve replacement under cardiopulmonary bypass can effectively reduce the myocardial and cerebral ischemia reperfusion injury. 展开更多
关键词 Valve replacement CARDIOPULMONARY BYPASS THYROID hormone ischemia reperfusion injury
下载PDF
DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury
15
作者 Guang Shi Juan Feng +1 位作者 Ling-Yan Jian Xin-Yu Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期863-868,共6页
Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role i... Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role in the regulation of learning and memory.To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury,in this study,we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2′-deoxycytidine,an inhibitor of DNA methylation.Our results showed that 5-aza-2′-deoxycytidine markedly improved the neurological function,and cognitive,social and spatial memory abilities,and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury.The effects of 5-aza-2′-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury.These findings suggest that inhibition of DNA methylation by 5-aza-2′-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury.These results provide theoretical evidence for stroke treatment using epigenetic methods. 展开更多
关键词 cognitive memory DNA methylation DNMT1 hippocampus ischemia/reperfusion social memory spatial memory TET1 transient middle cerebral artery occlusion 5-aza-2′-deoxycytidine
下载PDF
Mechanism of low molecular weight GTP binding protein RAC1 in injury of neural function of rats with cerebral ischemia reperfusion 被引量:3
16
作者 Ya-Hong Li Lu-Jun Qiao Xiao-Ying Lin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第5期460-464,共5页
Objective: To discuss the mechanism of low molecular weight GTP binding protein RAC1 in the injury of neural function based on building the rat model of cerebral ischemia reperfusion. Methods: Middle cerebral artery o... Objective: To discuss the mechanism of low molecular weight GTP binding protein RAC1 in the injury of neural function based on building the rat model of cerebral ischemia reperfusion. Methods: Middle cerebral artery of rats was ligated and the ligature was released to restore the perfusion after 2 h, the rat model of cerebral ischemia reperfusion injury was built, while the middle cerebral artery was ligated. The rats were randomly divided into the sham group, cerebral ischemia reperfusion group(I/R group) and the group with the injection of RAC1 activity inhibitor NSC23766(NSC group). The survival and neurological severity score of rats in each group were observed and recorded. Nissl staining was employed to observe the nerve cells, and Western blot to detect expression of RAC1, superoxide dismutase and malondialdehyde. Results: Number of nerve cells for rats in NSC group was significantly more than that in I/R group, but significantly less than that in sham group, with the statistical difference(P<0.05). The brain water content for rats in NSC group was significantly lower than that in I/R group, but significantly higher than that in sham group, with the statistical difference(P<0.05). The expression of RAC1 and malondialdehyde for rats in NSC group was significantly lower than that in I/R group, but higher than that in sham group; while the expression of superoxide dismutase was lower than that in sham group, but higher than that in I/R group, with the statistical difference(P<0.05). Conclusions: The inhibition of RAC1 activity can reduce the oxidative stress, reduce the neurologic impairment because of cerebral ischemia reperfusion and thus protect the neural function. 展开更多
关键词 RAC1 cerebral ischemia reperfusion NEURAL FUNCTION
下载PDF
Puerarin protects brain tissue against cerebral ischemia/reperfusion injury by inhibiting the inflammatory response 被引量:27
17
作者 Feng Zhou Liang Wang +4 位作者 Panpan Liu Weiwei Hu Xiangdong Zhu Hong Shen Yuanyuan Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2074-2080,共7页
Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ische... Puerarin, a traditional Chinese medicine, exerts a powerful neuroprotective effect in cerebral ischemia/reperfusion injury, but its mechanism is unknown. Here, we established rat models of middle cerebral artery ischemia/reperfusion injury using the suture method. Puerarin (100 mg/kg) was administered intraperitoneally 30 minutes before middle cerebral artery occlusion and 8 hours after reperfusion. Twenty-four hours after reperfusion, we found that puerarin significantly improved neurological deficit, reduced infarct size and brain water content, and notably diminished the expression of Toll-like receptor-4, myeloid differentiation factor 88, nuclear factor kappa B and tumor necrosis factor-α in the ischemic region. These data indicate that puerarin exerts an anti-inflammatory protective effect on brain tissue with ischemia/reperfusion damage by downregulating the expression of multiple inflammatory factors. 展开更多
关键词 nerve regeneration brain injury PUERARIN cerebral ischemia reperfusion injury rats inflammatory reaction Toll-like receptor-4 nuclear factor kappa B myeloid differentiation factor 88 tumor necrosis factor-α middle cerebral artery occlusion neural regeneration
下载PDF
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats 被引量:6
18
作者 Xin-juan Li Chao-kun Li +4 位作者 Lin-yu Wei Na Lu Guo-hong Wang Hong-gang Zhao Dong-liang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期932-937,共6页
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi... The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. 展开更多
关键词 nerve regeneration brain injury hydrogen sulfide cerebral ischemia/reperfusion injury P2X7 receptor 2 3 5-triphenyl-2H-tetrazolium chloride staining animal model protection sodiumhydrosulfide immunofiuorescence middle cerebral artery occlusion NSFC grant neural regeneration
下载PDF
Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemia-reperfusion injury 被引量:13
19
作者 Cuicui Yu Junke Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第7期622-632,共11页
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv... Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect. 展开更多
关键词 neural regeneration brain injury penehyclidine hydrochloride cerebral ischemia-reperfusion injuryischemic cerebrovascular disease APOPTOSIS excitatory amino acid oxygen free radicals superoxide dismutase N-methyI-D-aspartate receptor middle cerebral artery occlusion oxygen-glucose deprivation photographs-containing paper NEUROREGENERATION
下载PDF
Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury 被引量:18
20
作者 Xiao Lan Xin Zhang +3 位作者 Guo-ping Zhou Chun-xiao Wu Chun Li Xiu-hong Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期409-416,共8页
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr... Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves. 展开更多
关键词 nerve regeneration brain injury ELECTROACUPUNCTURE cell apoptosis cerebral ischemia/reperfusion injury neurological impairment score morphological changes immunohistoehemical assay p38 mitogen-activated protein kinases phosphorylated p38 HIPPOCAMPUS neural regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部