Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In t...Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.展开更多
An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on ...An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.展开更多
The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measur...The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.展开更多
The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 o...The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 of these tidal inlets, the best regression equation is A(km2) = 0.845 />(km3)1.20. The analysis shows that C and n are little different from those in the P-A relationship for the inlets of the South China Sea and East China Sea coasts. It is noted that the relationship between P and A is unstable because of the difference in sediment abundance. The study shows that a united P-A relationship can be obtained for the tidal inlets of lagoon type and bay-drowned-valley type, not containing some half-circle shape bays which confront deep water. These half-circle bays do not belong to tidal inlets because they do not have enough sediment abundance and are fairly open.展开更多
Aggregation is used to represent the real world in a model at an appropriate level of abstraction.We used the convection-diffusion equation to examine the implications of aggregation progressing from a three-dimension...Aggregation is used to represent the real world in a model at an appropriate level of abstraction.We used the convection-diffusion equation to examine the implications of aggregation progressing from a three-dimensional(3D)spatial description to a model representing a system as a single box that exchanges sediment with the adjacent environment.We highlight how all models depend on some forms of parametric closure,which need to be chosen to suit the scale of aggregation adopted in the model.All such models are therefore aggregated and make use of some empirical relationships to deal with sub-scale processes.One such appropriately aggregated model,the model for the aggregated scale morphological interaction between tidal basin and adjacent coast(ASMITA),is examined in more detail and used to illustrate the insight that this level of aggregation can bring to a problem by considering how tidal inlets and estuaries are impacted by sea level rise.展开更多
The French Atlantic coast seismicity is minor to moderate. Nevertheless, in western (north and central) part of France, the active tectonics related to the south Armorican and the Bay of Biscay context results somet...The French Atlantic coast seismicity is minor to moderate. Nevertheless, in western (north and central) part of France, the active tectonics related to the south Armorican and the Bay of Biscay context results sometimes in shallow earthquakes with magnitude above five (e.g., the Oleron seismic crisis, magnitude (local) = 5.2, 1972). The Charente region is featured by semi-diurnal tides that reach about six meters in height during the high tide period. Inlets are the main features of the Atlantic margin geomorphology nearby the Charente. Minor tsunamis have been observed and reported in the past. Here, we present a tsunami modelling computed with the TELEMAC package that solves the non linear shallow water equations. This work helps to identify the role of the inlets that characterize the Charente's geomorphology on water wave's propagation. A tidal model is considered while the tsunami simulation is performed. The modelling results show that the Antioche, the Maumusson and the Pertuis inlets protect the Charente coast from destructive waves.展开更多
Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry ...Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry and even location are always in flux.Even so,a nearly linear relationship between an inlet’s cross-sectional flow area and the inshore tidal prism is maintained-except when major wind and/or runoff events act to close or widen an inlet.Inlet location can be stabilized by jetties,but dredging may still be necessary to maintain a navigable channel.Armoring with rock large enough to resist erosion can protect an inlet bed or river mouth from excessive storm flow erosion.Armoring can also be used as a stratagem to close inlets.展开更多
Under hypersonic flight conditions,the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating.This paper proposes four cowl-lip blunting methods and studies the corresponding flow ch...Under hypersonic flight conditions,the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating.This paper proposes four cowl-lip blunting methods and studies the corresponding flow characteristics and performances of the generic hypersonic inlets by numerical simulation under the design conditions of a flight Mach number of 6 and an altitude of 26 km.The results show that the local shock interference patterns in the vicinity of the blunted cowl-lips have a substantial influence on the flow characteristics of the hypersonic inlets even though the blunting radius is very small,which contribute to a pronounced degradation of the inlet performance.The Equal Length blunting Manner(ELM)is the most optimal in that a nearly even reflection of the ramp shock produces an approximately straight and weak cowl reflection shock.The minimal total pressure loss,the lowest cowl drag,maximum mass-capture and the minimal aeroheating are achieved for the hypersonic inlet.For the other blunting manners,the ramp shock cannot reflect evenly and produces more curved cowl reflection shock.The Type V shock interference pattern occurs for the Cross Section Cutting blunting Manner(CSCM)and the strongest cowl reflection shock gives rise to the largest flow loss and drag.The cowl-lip blunted by the other two blunting manners is subjected to the shock interference pattern that transits with an increase in the blunting radius.Accordingly,the peak heat flux does not fall monotonously with the blunting radius increasing.Moreover,the cowl-lip surface suffers from severe aerothermal load when the shear layer or the supersonic jet impinges on the wall.展开更多
To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is prese...To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is presented.Moreover,a novel forebody design methodology which by rotating and assembling two waverider-based surfaces is firstly introduced in this paper.Some typical configurations are designed and their aerodynamic performances are evaluated by computational fluid dynamics.The results for forebodies analysis show that large volumetric efficiency,high lift-to-drag ratio,and uniformly distributed flowfield at the inlet cross section can be assured simultaneously.Furthermore,results of numerical simulation of four integrated configurations with various leading edge shapes,including three power-law curves and a cosine curve clearly show the advantage of high lift-to-drag ratio.Besides,the high pressure generated by the side wall of the airframe can be partly captured by the reasonably designed wings in the condition of small flight attack angle.Then the order of lift-to-drag ratio of four configurations at 0 degree flight attack angle is completely different from the condition of 4-degree flight attack angle.This result demonstrates that the curve shape of the leading edge is very important for the lift-to-drag ratio of the aircraft,and it should be further optimized under the cruising attack angle in future work.展开更多
In the design of a hypersonic inward-turning inlet by applying the traditional basic flowfield, a reflected shock-wave is formed in the isolator due to the continuous reflection of the cowlreflected shock wave in the ...In the design of a hypersonic inward-turning inlet by applying the traditional basic flowfield, a reflected shock-wave is formed in the isolator due to the continuous reflection of the cowlreflected shock wave in the basic flow-field, which interacts with the boundary layer to produce a considerable influence on the performance of the inlet. Here, a basic flow-field design method that can control the velocity direction at the throat section is developed, and numerical simulations are conducted to demonstrate the effectiveness of this method. The method presented in this paper can achieve the absorption of the reflected waves at the shoulder of the basic flow-field by adjusting the variation law of the center radius in the basic flow-field, and a smooth transition between the compression surface and the isolator can also be produced. The Mach number and total pressure recovery coefficient of the inlet designed according to this method are 3.00 and 0.657, respectively, at design point(the incoming flow Mach number Ma1= 6.0). The results show that with this method, the inlet can efficiently weaken both the reflection of the shock wave and the interaction between the boundary layer and the reflected shock waves, which improves the aerodynamic performance of the inlet.展开更多
In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the...In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition(CST) and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.展开更多
This work focuses on streamline tracing techniques for designing hypersonic inlets, and two deficiencies were discovered.Firstly, constriction ratios of stream-traced inlets are unpredictable and uncontrollable, which...This work focuses on streamline tracing techniques for designing hypersonic inlets, and two deficiencies were discovered.Firstly, constriction ratios of stream-traced inlets are unpredictable and uncontrollable, which may affect the integration with airframes and combustors. Secondly, stream-traced inlets cannot exactly inherit properties from a basic flowfield through which they are traced. Then flow mechanisms underneath these phenomena were clarified. It was made clearly that properties of flow tubes captured by an inlet are what essentially determines constriction ratios as well as performances of inlets. Based on flow mechanisms, the method of calculating along streamlines(MCS) was proposed, which makes it possible to evaluate inlet performances directly. At last, optimization design methodologies were introduced to make inlet constriction ratios controllable,and simultaneously improve inlet performances as much as possible.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of thes...One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method.The porous object is considered to be a moist food sample,located...Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method.The porous object is considered to be a moist food sample,located in the middle of the cavity with inlet and outlet ports with different configurations of inlet/outlet ports.Convective drying performance is numerically assessed for different values of Reynolds numbers(between 50 and 250),dry air inlet temperature(between 40 and 80℃)and different locations of the port.It is observed that changing the port locations has significant impacts on the flow recirculaitons inside the triangular chamber while convective drying performance is highly affected.The moisture content reduces with longer time and for higher Reynolds number(Re)values.Case P4 where inlet and outlet ports are in the middle of the walls provides the most effective configuration in terms of convective drying performance while the worst case is seen for P1 case where inlet and outlet are closer to the corners of the chamber.There is a 192% difference between the moisture reduction of these two cases at Re=250,T=80℃ and t=120 min.展开更多
Significant aerodynamic engine instability can occur during the operation of marine gas turbines as airflow enters the compressor through a 90°turning and causes inlet distortion.This study adopts the method of s...Significant aerodynamic engine instability can occur during the operation of marine gas turbines as airflow enters the compressor through a 90°turning and causes inlet distortion.This study adopts the method of simulating board equivalence to provide the target distortion flow field for ship compressors.The characteristics of the flow field behind the simulated board are obtained through experiments and numerical simulations,through which the relationship between the height of the simulated board and the total pressure distortion is elucidated.Subsequently,the study summarizes the prediction formula to achieve a distortion prediction of 0.8%–7.8%.In addition,this work analyzes the effects of drilling methods and diameters on flow nonuniformity by drilling holes into the simulation board.The results indicate that drilling holes on the board can weaken the nonuniformity of the flow field within a certain range and change the distribution pattern of total pressure in the cross-section.Furthermore,the total pressure distortion no longer changes significantly when the number of holes is too large.The proposed double simulation board structure is capable of obtaining the following two types of distorted flow fields:symmetrical dual lowpressure zones and low-pressure zones with high distortion intensity at the compressor inlet.The distortion equivalent simulation method proposed in this work can obtain various types of distortion spectra,thereby meeting the distortion parameter requirements for the antidistortion testing of marine engines.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o...In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.展开更多
This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO...This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.展开更多
基金The National Key R&D Project of China under contract No.2017YFC1404201the USA North Pacific Research Board Project under contract No.1229the USA Bureau of Ocean Energy Management Awards under contract Nos M12PG00024(ACES)and M12PG00018(Arctic EIS)
文摘Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R^2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.
基金The Foundation of China Ocean Mineral Resources R&D Association under contract No.DY135-E2-2-02the National Natural Science Foundation of China under contract Nos 9142820641976028 and 41806019。
文摘An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.
基金financial support from the National Key Technologies R&D Program of China(2018YFF0216002)。
文摘The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.
基金This work is financially supported by the National Nature Science Fundation of China
文摘The relationship between P (spring tidal prism) and A (throat area below mean sea level) is statistically analysed in terms of 29 tidal inlets or bays along the Huanghai Sea (Yellow Sea) and Bohai Sea coasts. For 15 of these tidal inlets, the best regression equation is A(km2) = 0.845 />(km3)1.20. The analysis shows that C and n are little different from those in the P-A relationship for the inlets of the South China Sea and East China Sea coasts. It is noted that the relationship between P and A is unstable because of the difference in sediment abundance. The study shows that a united P-A relationship can be obtained for the tidal inlets of lagoon type and bay-drowned-valley type, not containing some half-circle shape bays which confront deep water. These half-circle bays do not belong to tidal inlets because they do not have enough sediment abundance and are fairly open.
文摘Aggregation is used to represent the real world in a model at an appropriate level of abstraction.We used the convection-diffusion equation to examine the implications of aggregation progressing from a three-dimensional(3D)spatial description to a model representing a system as a single box that exchanges sediment with the adjacent environment.We highlight how all models depend on some forms of parametric closure,which need to be chosen to suit the scale of aggregation adopted in the model.All such models are therefore aggregated and make use of some empirical relationships to deal with sub-scale processes.One such appropriately aggregated model,the model for the aggregated scale morphological interaction between tidal basin and adjacent coast(ASMITA),is examined in more detail and used to illustrate the insight that this level of aggregation can bring to a problem by considering how tidal inlets and estuaries are impacted by sea level rise.
文摘The French Atlantic coast seismicity is minor to moderate. Nevertheless, in western (north and central) part of France, the active tectonics related to the south Armorican and the Bay of Biscay context results sometimes in shallow earthquakes with magnitude above five (e.g., the Oleron seismic crisis, magnitude (local) = 5.2, 1972). The Charente region is featured by semi-diurnal tides that reach about six meters in height during the high tide period. Inlets are the main features of the Atlantic margin geomorphology nearby the Charente. Minor tsunamis have been observed and reported in the past. Here, we present a tsunami modelling computed with the TELEMAC package that solves the non linear shallow water equations. This work helps to identify the role of the inlets that characterize the Charente's geomorphology on water wave's propagation. A tidal model is considered while the tsunami simulation is performed. The modelling results show that the Antioche, the Maumusson and the Pertuis inlets protect the Charente coast from destructive waves.
文摘Sandy inlets are in a dynamic equilibrium between wave-driven littoral drift acting to close them,and tidal flows keeping them open.Their beds are in a continual state of suspension and deposition,so their bathymetry and even location are always in flux.Even so,a nearly linear relationship between an inlet’s cross-sectional flow area and the inshore tidal prism is maintained-except when major wind and/or runoff events act to close or widen an inlet.Inlet location can be stabilized by jetties,but dredging may still be necessary to maintain a navigable channel.Armoring with rock large enough to resist erosion can protect an inlet bed or river mouth from excessive storm flow erosion.Armoring can also be used as a stratagem to close inlets.
基金supported by the National Natural Science Foundation of China(Grant Nos.90716014 and 91216115)
文摘Under hypersonic flight conditions,the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating.This paper proposes four cowl-lip blunting methods and studies the corresponding flow characteristics and performances of the generic hypersonic inlets by numerical simulation under the design conditions of a flight Mach number of 6 and an altitude of 26 km.The results show that the local shock interference patterns in the vicinity of the blunted cowl-lips have a substantial influence on the flow characteristics of the hypersonic inlets even though the blunting radius is very small,which contribute to a pronounced degradation of the inlet performance.The Equal Length blunting Manner(ELM)is the most optimal in that a nearly even reflection of the ramp shock produces an approximately straight and weak cowl reflection shock.The minimal total pressure loss,the lowest cowl drag,maximum mass-capture and the minimal aeroheating are achieved for the hypersonic inlet.For the other blunting manners,the ramp shock cannot reflect evenly and produces more curved cowl reflection shock.The Type V shock interference pattern occurs for the Cross Section Cutting blunting Manner(CSCM)and the strongest cowl reflection shock gives rise to the largest flow loss and drag.The cowl-lip blunted by the other two blunting manners is subjected to the shock interference pattern that transits with an increase in the blunting radius.Accordingly,the peak heat flux does not fall monotonously with the blunting radius increasing.Moreover,the cowl-lip surface suffers from severe aerothermal load when the shear layer or the supersonic jet impinges on the wall.
基金supported by the National Natural Science Foundation of China (Grant No. 90916013)the guidance and help from Academician Li Tian and peer reviewers are gratefully acknowledged
文摘To aim at design requirements of high lift-to-drag ratio as well as high volumetric efficiency of next generation hypersonic airplanes,a body-wing-blending configuration with double flanking air inlets layout is presented.Moreover,a novel forebody design methodology which by rotating and assembling two waverider-based surfaces is firstly introduced in this paper.Some typical configurations are designed and their aerodynamic performances are evaluated by computational fluid dynamics.The results for forebodies analysis show that large volumetric efficiency,high lift-to-drag ratio,and uniformly distributed flowfield at the inlet cross section can be assured simultaneously.Furthermore,results of numerical simulation of four integrated configurations with various leading edge shapes,including three power-law curves and a cosine curve clearly show the advantage of high lift-to-drag ratio.Besides,the high pressure generated by the side wall of the airframe can be partly captured by the reasonably designed wings in the condition of small flight attack angle.Then the order of lift-to-drag ratio of four configurations at 0 degree flight attack angle is completely different from the condition of 4-degree flight attack angle.This result demonstrates that the curve shape of the leading edge is very important for the lift-to-drag ratio of the aircraft,and it should be further optimized under the cruising attack angle in future work.
基金supported by the National Natural Science Foundation of China (Nos. 11702229, 11602207 and 91641103)
文摘In the design of a hypersonic inward-turning inlet by applying the traditional basic flowfield, a reflected shock-wave is formed in the isolator due to the continuous reflection of the cowlreflected shock wave in the basic flow-field, which interacts with the boundary layer to produce a considerable influence on the performance of the inlet. Here, a basic flow-field design method that can control the velocity direction at the throat section is developed, and numerical simulations are conducted to demonstrate the effectiveness of this method. The method presented in this paper can achieve the absorption of the reflected waves at the shoulder of the basic flow-field by adjusting the variation law of the center radius in the basic flow-field, and a smooth transition between the compression surface and the isolator can also be produced. The Mach number and total pressure recovery coefficient of the inlet designed according to this method are 3.00 and 0.657, respectively, at design point(the incoming flow Mach number Ma1= 6.0). The results show that with this method, the inlet can efficiently weaken both the reflection of the shock wave and the interaction between the boundary layer and the reflected shock waves, which improves the aerodynamic performance of the inlet.
基金supported by the ‘‘111" Project of China (No. B17037)
文摘In this work, a novel airframe/propulsion integration design method of the wing-body configuration for hypersonic cruise aircraft is proposed, where the configuration is integrated with inward-turning inlets. With the help of this method, the major design concern of balancing the aerodynamic performance against the requirements for efficient propulsion can be well addressed. A novel geometric parametrically modelling method based on a combination of patched class and shape transition(CST) and COONs surface is proposed to represent the configuration, especially a complex configuration with an irregular inlet lip shape. The modelling method enlarges the design space of components on the premise of guaranteeing the configuration integrity via special constraints imposed on the interface across adjacent surfaces. A basic flow inside a cone shaped by a dual-inflection-point generatrix is optimized to generate the inward-turning inlet with improvements of both compression efficiency and flow uniformity. The performance improvement mechanism of this basic flow is the compression velocity variation induced by the variation of the generatrix slope along the flow path. At the design point, numerical simulation results show that the lift-to-drag ratio of the configuration is as high as 5.2 and the inlet works well with a high level of compression efficiency and flow uniformity. The design result also has a good performance on off-design conditions. The achievement of all the design targets turns out that the integration design method proposed in this paper is efficient and practical.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572347,11872071)the China Scholarship Council(CSC)
文摘This work focuses on streamline tracing techniques for designing hypersonic inlets, and two deficiencies were discovered.Firstly, constriction ratios of stream-traced inlets are unpredictable and uncontrollable, which may affect the integration with airframes and combustors. Secondly, stream-traced inlets cannot exactly inherit properties from a basic flowfield through which they are traced. Then flow mechanisms underneath these phenomena were clarified. It was made clearly that properties of flow tubes captured by an inlet are what essentially determines constriction ratios as well as performances of inlets. Based on flow mechanisms, the method of calculating along streamlines(MCS) was proposed, which makes it possible to evaluate inlet performances directly. At last, optimization design methodologies were introduced to make inlet constriction ratios controllable,and simultaneously improve inlet performances as much as possible.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
文摘One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
文摘Heat and mass transfer of a circular-shaped porous moist object inside a two-dimensional triangle cavity is investigated by using finite element method.The porous object is considered to be a moist food sample,located in the middle of the cavity with inlet and outlet ports with different configurations of inlet/outlet ports.Convective drying performance is numerically assessed for different values of Reynolds numbers(between 50 and 250),dry air inlet temperature(between 40 and 80℃)and different locations of the port.It is observed that changing the port locations has significant impacts on the flow recirculaitons inside the triangular chamber while convective drying performance is highly affected.The moisture content reduces with longer time and for higher Reynolds number(Re)values.Case P4 where inlet and outlet ports are in the middle of the walls provides the most effective configuration in terms of convective drying performance while the worst case is seen for P1 case where inlet and outlet are closer to the corners of the chamber.There is a 192% difference between the moisture reduction of these two cases at Re=250,T=80℃ and t=120 min.
基金Supported by the National Natural Science Foundation of China(No.52101348)the National Science and Technology Major Project(Y2019-VIII-0013-0174)the Fundamental Research Funds for the Central Universities(No.3072022JC0301)。
文摘Significant aerodynamic engine instability can occur during the operation of marine gas turbines as airflow enters the compressor through a 90°turning and causes inlet distortion.This study adopts the method of simulating board equivalence to provide the target distortion flow field for ship compressors.The characteristics of the flow field behind the simulated board are obtained through experiments and numerical simulations,through which the relationship between the height of the simulated board and the total pressure distortion is elucidated.Subsequently,the study summarizes the prediction formula to achieve a distortion prediction of 0.8%–7.8%.In addition,this work analyzes the effects of drilling methods and diameters on flow nonuniformity by drilling holes into the simulation board.The results indicate that drilling holes on the board can weaken the nonuniformity of the flow field within a certain range and change the distribution pattern of total pressure in the cross-section.Furthermore,the total pressure distortion no longer changes significantly when the number of holes is too large.The proposed double simulation board structure is capable of obtaining the following two types of distorted flow fields:symmetrical dual lowpressure zones and low-pressure zones with high distortion intensity at the compressor inlet.The distortion equivalent simulation method proposed in this work can obtain various types of distortion spectra,thereby meeting the distortion parameter requirements for the antidistortion testing of marine engines.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
文摘In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.
文摘This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.