Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^...Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^2- and C-H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions.展开更多
The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag...The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calcula- tions and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.展开更多
An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the ...An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the distribution of inner soil pressure over the opened bottom cylindrical structure. Through investigation of the settlement and the inner soil pressure on the opened bottom cylinder by model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of friction resistance between the inner filler and the wall of the cylinder during overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the inner soil pressure on the cylindrical structure under axisymmetric loading or non- axisymmetric (with lateral) loading is proposed in this paper. Meanwhile, the effective anti-overturning ratio of the opened bottom cylinder is derived.展开更多
Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large de...Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.展开更多
In Ni-MH battery, oxygen evolution causes a high inner pressure during charge and overdischarge, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obst...In Ni-MH battery, oxygen evolution causes a high inner pressure during charge and overdischarge, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. In this paper, effect of cobalt phthalocyanine (CoPc) on the floating-charge performance of Ni-MH batteries are examined. Experimental results show that the battery with CoPc additive by appropriate adding way displayed a better capability of floating charge and discharge than the one without CoPc. The battery with CoPc added into electrolyte shows the best charging efficiency and cycleability and the slowest increasing speed of inner pressure after 2000th charge and discharge.展开更多
The effects of overcharge on electrochemical performance of AA size sealed-type nickel/metal hydride(Ni/MH) batteries and its degradation mechanism were investigated. The results indicated that the relationship betw...The effects of overcharge on electrochemical performance of AA size sealed-type nickel/metal hydride(Ni/MH) batteries and its degradation mechanism were investigated. The results indicated that the relationship between the effects of different overcharge currents on the increasing velocity of inner pressure and the degradation velocity of cycle life and discharge voltage remains in almost direct proportion. After overcharge cycles, the positive electrode materials remain the original structure, but there occur some breaks because of the irreversible expand of crystal lattice. And the negative electrode alloy particles have inconspicuous pulverization, but are covered with lots of corrosive products and its main component is rare earth hydroxide or oxide. These are all the main reasons leading to the degradation behavior of the discharge capacity and cycle life of Ni/MH batteries.展开更多
Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical pr...Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied.展开更多
The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinde...The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinder base, which were obtained from the model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of frictional resistance between the inner filler and the wall of the cylinder during the overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the base stress of the opened bottom cylinder structure is proposed. Meanwhile, the formulas for calculating the effective anti-overturning ratio of the opened bottom cylinder are derived.展开更多
The presence of wrinkles in the membrane is the main factor to induce the reflector surface inaccuracy of the space inflatable antenna.Based on the commercial finite element package ABAQUS,a numerical procedure for me...The presence of wrinkles in the membrane is the main factor to induce the reflector surface inaccuracy of the space inflatable antenna.Based on the commercial finite element package ABAQUS,a numerical procedure for membrane wrinkle analysis was set up and used to analyze a space inflatable antenna which was under inner pressure to evaluate its wrinkle characteristics.First,the inner pressure effect on the reflector's wrinkle pattern was studied thoroughly.As inner pressure increases,both the number and the amplitude of the wrinkles decrease,but the total deformation of the whole reflector surface increases much.Second,the influence of the interactions between antenna's parts was investigated comprehensively.Any kind of unwanted interaction deteriorates reflector's wrinkle characteristics.The works are valuable to the development and research of the space inflatable antenna.展开更多
基金supported by Chinese Natural Science Foundation (No.40873047)
文摘Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^2- and C-H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions.
基金Project 2004GG3204001 supported by the Science and Technology Development Plan of Shandong Province
文摘The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calcula- tions and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.
文摘An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation. The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the distribution of inner soil pressure over the opened bottom cylindrical structure. Through investigation of the settlement and the inner soil pressure on the opened bottom cylinder by model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of friction resistance between the inner filler and the wall of the cylinder during overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the inner soil pressure on the cylindrical structure under axisymmetric loading or non- axisymmetric (with lateral) loading is proposed in this paper. Meanwhile, the effective anti-overturning ratio of the opened bottom cylinder is derived.
基金Funded by the National Natural Science Foundation of China(No.51205260)
文摘Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.
文摘In Ni-MH battery, oxygen evolution causes a high inner pressure during charge and overdischarge, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. In this paper, effect of cobalt phthalocyanine (CoPc) on the floating-charge performance of Ni-MH batteries are examined. Experimental results show that the battery with CoPc additive by appropriate adding way displayed a better capability of floating charge and discharge than the one without CoPc. The battery with CoPc added into electrolyte shows the best charging efficiency and cycleability and the slowest increasing speed of inner pressure after 2000th charge and discharge.
文摘The effects of overcharge on electrochemical performance of AA size sealed-type nickel/metal hydride(Ni/MH) batteries and its degradation mechanism were investigated. The results indicated that the relationship between the effects of different overcharge currents on the increasing velocity of inner pressure and the degradation velocity of cycle life and discharge voltage remains in almost direct proportion. After overcharge cycles, the positive electrode materials remain the original structure, but there occur some breaks because of the irreversible expand of crystal lattice. And the negative electrode alloy particles have inconspicuous pulverization, but are covered with lots of corrosive products and its main component is rare earth hydroxide or oxide. These are all the main reasons leading to the degradation behavior of the discharge capacity and cycle life of Ni/MH batteries.
基金supported by the National Natural Science Foundation of China(Grant No.52008308)the Postdoctoral Innovative Talents Supporting Program(Grant No.BX20200247)the China Postdoctoral Science Foundation(Grant No.2021M692447).
文摘Full-scale loading tests were performed on shield segmental linings bearing a high earth pressure and high inner water pressure,focus-ing on the effects of the inner water load and assembly manner on the mechanical properties of the segmental linings.The test results indicate that the deep-buried segmental linings without inner pressure have a high safety reserve.After the action of high inner water pressure,the lining deformation will increase with the reduction of the safety reserve,caused by the significant decrease in the axial force in the linings.Because the bending moment at the segmental joints is transferred to the segment sections in the adjacent ling rings,the convergence deformation,openings of segmental joints,and bolt strains are smaller for the stagger-jointed lining than those for the continuous-jointed lining;however,dislocations appear in the circumferential joints owing to the stagger-jointed assembly.Although it significantly improves the mechanical performance of the segmental lining,stagger-jointed assembly results in compromising the water-proofing safety of circumferential joints.The stagger-jointed assembly manner can be considered to improve the service performance of shield tunnels bearing high inner water pressure on the premise that circumferential joint waterproofing is satisfied.
文摘The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinder base, which were obtained from the model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of frictional resistance between the inner filler and the wall of the cylinder during the overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the base stress of the opened bottom cylinder structure is proposed. Meanwhile, the formulas for calculating the effective anti-overturning ratio of the opened bottom cylinder are derived.
基金the National Natural Science Foundation of China(Nos. 50878128 and 50808122)the Shanghai Committee of Science and Technology(No. 06DZ22105)
文摘The presence of wrinkles in the membrane is the main factor to induce the reflector surface inaccuracy of the space inflatable antenna.Based on the commercial finite element package ABAQUS,a numerical procedure for membrane wrinkle analysis was set up and used to analyze a space inflatable antenna which was under inner pressure to evaluate its wrinkle characteristics.First,the inner pressure effect on the reflector's wrinkle pattern was studied thoroughly.As inner pressure increases,both the number and the amplitude of the wrinkles decrease,but the total deformation of the whole reflector surface increases much.Second,the influence of the interactions between antenna's parts was investigated comprehensively.Any kind of unwanted interaction deteriorates reflector's wrinkle characteristics.The works are valuable to the development and research of the space inflatable antenna.