Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvabili...Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvability,continuity and surjectivity,and some fixed point and surjectivity methods in nonlinear analysis were used to deal with these questions. As a result,the main theorems are obtained,which provide some sufficient criterions to solve above questions described by the boundary properties of the enterprises consuming operator.展开更多
This paper reinterprets the economic input-output equation as a description of a realized situation without considering decision making. This paper uses the equation that the self-sufficiency rate is added to the Leon...This paper reinterprets the economic input-output equation as a description of a realized situation without considering decision making. This paper uses the equation that the self-sufficiency rate is added to the Leontief type, and discusses its solvability. The equation has a unique solution if and only if each part of the relevant society satisfies the space-time openness condition. This condition means that commodities which a part of the relevant society possesses are not all inputted to its inside. Moreover, if the process of input and output is time irreversible, each part of the relevant society satisfies the space-time openness condition. Therefore, the solvability of the equation is guaranteed by time irreversibility. This proposition seems to be relevant to the grandfather paradox which is a type of time paradox.展开更多
The metabolic cycle firstly considered here is composed of a unique initial substrate, six enzymes, and five empty boxes to accommodate the substrates derived from the transformation of the initial substrate. This cyc...The metabolic cycle firstly considered here is composed of a unique initial substrate, six enzymes, and five empty boxes to accommodate the substrates derived from the transformation of the initial substrate. This cycle was considered as a pre-Closed Metabolic Cycle (CMC). Using this model, the influence of changing the kinetic constant values of any enzyme on the substrate concentration was explored. This model was transformed into an open metabolic cycle (OMC) by the input and output of two metabolites catalyzed by two external enzymes. In this case, the relative rates of input and output of metabolites were also examined;it can be concluded that the OMC cycles form delicate and fragile structures which can be theoretically disrupted, making them metabolically unfeasible.展开更多
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical...In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.展开更多
文摘Based on the classical(matrix type)input-output analysis,a type of nonlinear (continuous type) conditional Leontief model,input-output equation were introduced,as well as three corresponding questions,namely,solvability,continuity and surjectivity,and some fixed point and surjectivity methods in nonlinear analysis were used to deal with these questions. As a result,the main theorems are obtained,which provide some sufficient criterions to solve above questions described by the boundary properties of the enterprises consuming operator.
文摘This paper reinterprets the economic input-output equation as a description of a realized situation without considering decision making. This paper uses the equation that the self-sufficiency rate is added to the Leontief type, and discusses its solvability. The equation has a unique solution if and only if each part of the relevant society satisfies the space-time openness condition. This condition means that commodities which a part of the relevant society possesses are not all inputted to its inside. Moreover, if the process of input and output is time irreversible, each part of the relevant society satisfies the space-time openness condition. Therefore, the solvability of the equation is guaranteed by time irreversibility. This proposition seems to be relevant to the grandfather paradox which is a type of time paradox.
文摘The metabolic cycle firstly considered here is composed of a unique initial substrate, six enzymes, and five empty boxes to accommodate the substrates derived from the transformation of the initial substrate. This cycle was considered as a pre-Closed Metabolic Cycle (CMC). Using this model, the influence of changing the kinetic constant values of any enzyme on the substrate concentration was explored. This model was transformed into an open metabolic cycle (OMC) by the input and output of two metabolites catalyzed by two external enzymes. In this case, the relative rates of input and output of metabolites were also examined;it can be concluded that the OMC cycles form delicate and fragile structures which can be theoretically disrupted, making them metabolically unfeasible.
文摘In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented.