Cellulose acetate nitrate(CAN) was used as an insensitive energetic binder to improve the insensitive munitions(IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges.CAN conta...Cellulose acetate nitrate(CAN) was used as an insensitive energetic binder to improve the insensitive munitions(IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges.CAN contains the energetic nitro groups found in nitrocellulose(NC),but also acetyl functionalities,which lowered the polymer's sensitivity to heat and shock,and therefore improved its IM properties relative to NC.The formulation,development and small-scale characterization testing of several CAN-based propellants were done.The formulations,using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed.The small scale characterization testing,such as closed bomb testing,small scale sensitivity,thermal stability,and chemical compatibility were done.The mechanical response of the propellants under high-rate uni-axial compression at,hot,cold,and ambient temperatures were also completed.Critical diameter testing,hot fragment conductive ignition(HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli.Utilizing the propellant chemical composition,theoretical predictions of erosivity were completed.All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the105 mm M67 artillery charge configurations.The test results completed in the small and large scale testing are discussed.展开更多
This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the ...This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].展开更多
文摘Cellulose acetate nitrate(CAN) was used as an insensitive energetic binder to improve the insensitive munitions(IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges.CAN contains the energetic nitro groups found in nitrocellulose(NC),but also acetyl functionalities,which lowered the polymer's sensitivity to heat and shock,and therefore improved its IM properties relative to NC.The formulation,development and small-scale characterization testing of several CAN-based propellants were done.The formulations,using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed.The small scale characterization testing,such as closed bomb testing,small scale sensitivity,thermal stability,and chemical compatibility were done.The mechanical response of the propellants under high-rate uni-axial compression at,hot,cold,and ambient temperatures were also completed.Critical diameter testing,hot fragment conductive ignition(HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli.Utilizing the propellant chemical composition,theoretical predictions of erosivity were completed.All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the105 mm M67 artillery charge configurations.The test results completed in the small and large scale testing are discussed.
基金AlzChem Trostberg GmbH, Trostberg, Germany for funding this work
文摘This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].