Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The ex...Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.展开更多
Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment wa...Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment was 50~2100. Experiment results showed thatTWCI can evidently augment the heat transfer performance of steam condensation in tubewith less pressure drop increase.展开更多
REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the gr...REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field.展开更多
文摘Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.
文摘Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment was 50~2100. Experiment results showed thatTWCI can evidently augment the heat transfer performance of steam condensation in tubewith less pressure drop increase.
基金supported by the National MCF Energy R&D Program under Grant No.2022YFE03150103the National Natural Science Foundation of China(NSFC)under Grant No.52277026the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers,Seoul National University in 2023.
文摘REBa_(2)Cu_(3)O_(7−x)(REBCO)coated conductors,owing to its high tensile strength and current‐carrying ability in a background field,are widely regarded a promising candidate in high‐field applications.Despite the great potentials,recent studies have highlighted the challenges posed by screening currents,which are featured by a highly nonuniform current distribution in the superconducting layer.In this paper,we report a comprehensive study on the behaviors of screening currents in a compact REBCO coil,specifically the screeningcurrent‐induced magnetic fields and strains.Experiments were carried out in the self‐generated magnetic field and a background field,respectively.In the self‐field condition,the full hysteresis of the magnetic field was obtained by applying current sweeps with repeatedly reversed polarity,as the nominal center field reached 9.17 T with a maximum peak current of 350 A.In a background field of 23.15 T,the insert coil generated a center field of 4.17 T with an applied current of 170 A.Ultimately,a total center field of 32.58 T was achieved before quench.Both the sequential model and the coupled model considering the perpendicular field modification due to conductor deformation are applied.The comparative study shows that,for this coil,the electromagnetic–mechanical coupling plays a trivial role in self‐field conditions up to 9 T.In contrast,with a high axial field dominated by the background field,the coupling effect has a stronger influence on the predicted current and strain distributions.Further discussions regarding the role of background field on the strains in the insert suggest potential design strategies to maximize the total center field.