期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Instability energy mechanism of super-large section crossing chambers in deep coal mines 被引量:3
1
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Purev Lkhamsuren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1075-1086,共12页
The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under uneq... The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions. 展开更多
关键词 Super-large section INTERSECTION instability energy mechanism Optimization design Field monitoring
下载PDF
Experimental study on the irreversible displacement evolution and energy dissipation characteristics of disturbance instability of regular joints 被引量:2
2
作者 Jianan Yang Pengxian Fan +2 位作者 Mingyang Wang Jie Li Lu Dong 《Deep Underground Science and Engineering》 2023年第1期20-36,共17页
To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shea... To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shear tests on symmetrical regular dentate joints of two materials at three undulation angles under specific initial static stress,disturbance frequency,and peak value.The test results indicate that:(i)the total ultimate instability displacement is only related to the intrinsic properties of the joints but not to the initial static stress and disturbance parameters;(ii)the cumulative irreversible displacement required for the disturbance instability conforms to the logistic inverse function relationship with the number of disturbances,displaying the variation trend of“rapid increase in the front,stable in the middle,and sudden increase in the rear”;(iii)the accumulation of plastic deformation energy is consistent with the evolution law of irreversible displacement of joints and the overall proportion of hysteretic energy is not large;(iv)the dissipated energy required for the instability of each group of joints is basically the same under various disturbance conditions,and this energy is mainly controlled by the initial shear stress and has no connection with the disturbance parameters.The stability of the total disturbance deformation and the disturbance energy law of the joints revealed in the tests provide data support for reasonably determining the disturbance instability criterion of joints. 展开更多
关键词 coupled static-dynamic loading instability energy irreversible displacement JOINTS stability
下载PDF
The Influence of Airflow Transport Pathways on Precipitation during the Rainy Season in the Liupan Mountains of Northwest China
3
作者 Yujun QIU Chunsong LU +1 位作者 Zhiliang SHU Peiyun DENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2215-2229,共15页
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f... This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes. 展开更多
关键词 regional precipitation localized precipitation airflow transport water vapor flux instability energy topographic influence
下载PDF
The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms 被引量:2
4
作者 WANG Shihong LIU Zhiliang +1 位作者 PANG Chongguang LIU Huiqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期9-17,共9页
Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the dec... Both the level of the high-frequency eddy kinetic energy(HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension(KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation. 展开更多
关键词 Kuroshio Extension mesoscale eddy decadal modulation baroclinic instability barotropic energy conversion rate nonlinear eddy-eddy interaction
下载PDF
Study of Robinson instabilities with a higher-harmonic cavity for the HLS phase Ⅱ project
5
作者 赵宇宁 李为民 +1 位作者 吴丛凤 王琳 《Chinese Physics C》 SCIE CAS CSCD 2012年第11期1136-1139,共4页
In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. In... In the Phase Ⅱ Project at the Hefei Light Source, a fourth-harmonic "Landau" cavity will be operated in order to suppress the coupled-bunch instabilities and increase the beam lifetime of the Hefei storage ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider the Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity. 展开更多
关键词 Robinson instability higher-harmonic cavity analytic modeling Landau damping rate simulation energy spread
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部